

The bioCRACK Process

 a refinery integrated biomass-to-liquid concept to produce diesel from biogenic feedstock

Edgar AHN, CSO BDI - BioEnergy International AG

Outline

- BDI at a glance
- Motivation
- bioCRACK Concept
- Pilot Plant
- Experimental Results
- Outlook / Summary

BDI at a glance

- Austrian based, highly professional plant engineering and construction company
- Tailor-made turn-key solutions
- Own biodiesel & biogas technologies "from waste to value"
- More than 40 reference plants on 4 continents, since 1991
- Strong in-house r & d
 (5 10% of annual revenue)

Global Player

bioCRACK - Motivation

IEA projected global biofuels demand

Huge projected global demand on biofuels especially on advanced (Bio)Diesel

Biodiesel - conventional

Ethanol - conventional

EU RED:

10% renewable energy in transport (2020), Lignocellulosic-biofuels preferred (double counting)

US Renewable Fuel Standard (RFS2): 36 billion gallons renewable fuels, of which 21 bgal advanced biofuels (2022)

Source: IEA Technology Roadmap - Biofuels for Transport 2011 1 exajoule ~ 23-24 Mio t Oil

bioCRACK - Motivation

Europe oil product balances

Source (by OMV): Refining Capacity Study, EUROPIA Strategy Council

bioCRACK - Motivation

- Continuous development of Benchmark-Technologies for Biofuel production
- Technically simple process for the production of Next Generation Biofuel
- Conversion of biogenic waste & residues from "non-food" areas into

bioCRACK - Project Goals

- Compliance of current quality standards in final fuel product
- Useable side-products, no waste streams
- Integrable in conventional process of mineral oil refining
- Liquid phase pyrolysis (liquefaction of solid biomass)
- Co-processing of intermediate product in refinery (heavy ends) and solid Biomass

bioCRACK History

Start basic research of liquid phase pyrolysis

Start-up of test plant (6kg/h); Test trials

Start Coop. with OMV, Engineering pilot plant Construction & start-up

Continuous test runs (24h/5d)

2013/14

bioCRACK Partners

BDI — BioEnergy International AG

OMV Refining and Marketing GmbH

Institute of Chemical Engineering and Environmental **Technology**

Prof. Dr. M. Siebenhofer

Austrian Climate & Energy Fund "New Energies 2020"

bioCRACK - Concept

Typical pathways from lignocellulosis to biofuel

bioCRACK - Concept

In liquid phase pyrolysis (LPP) a hot liquid is used as heat carrier

Pro:

- Moderate process conditions (ambient) pressure, temperature <450°C)
- Compared to other technologies simple concept
- Heat recovery possible
- Usage of standard industrial equipment
- Time to market short
- Direct conversion from solid biomass to liquid hydrocarbon

Contra:

- Limitation in maximum temperature
- Limited conversion from solid to fuel.
- Challenging separation task solid/liquid
- Utilisation of by-products necessary
- Cracking of the heat carrier oil

Chance for integrated process in standard refinery

To succeed with LPP one need to use a heat carrier oil where cracking is desired!

bioCRACK - Process Scheme

bioCRACK - Pilot Plant

bioCRACK - Pilot Plant

bioCRACK - Pilot Plant

bioCRACK - Refinery Integration

bioCRACK Pilot Plant

Facts and figures

Project duration: April 2010 - 2014

Project cost: € 7 Mio (Grand by Austrian Climate and Energy Fund: € 2,0 Mio.)

Dimensions: basis: 7,5x7m, height: 21,5m

Steelwork: 60 tons

Pipes: >2.000 m

■ I/O: > 700

Engineering demand: ~ 17.000 hours

 Feed capacity: 100 kg/h biomass and 1000 kg/h heavy oil

Pressure: atmospheric

Temperature: up to 400°C

bioCRACK Pilot Plant

Integrated pilot plant at the OMV refinery Schwechat/Austria*

*Dismantled End 2015

bioCRACK - Feedstock

Ideal biomass for bioCRACK is renewable lignocelluloses

- + Low water content
- + Low nitrogen, chlorine, toxics
- + Fine particle size (<5mm) possible

Examples:

- Wood chips (soft and hard wood)
- Forestry residues
- Chopped straw/agricultural residue
- 0

Biomass contains up to 50% oxygen in complex molecular structure. Oxygen is unwanted element in liquid fuels and has to be removed to reach requested fuel quality!

bioCRACK - detailed C14 Balance

Bio-carbon transfer in streams (H06, 375°C)

Results from bioCRACK pilot plant Schwechat Feedstock: spruce

bioCRACK - Diesel Fuel

Upgrading of raw diesel to EN590 quality is possible

Parameter	Untreated raw diesel	After hydro treatment	EN 590
Density (15°C)	868 kg/m³	833 kg/m³	820 - 845 kg/m³
Viscosity (40°C)	2,53 mm²/s	n.a.	2 - 4,5 mm²/s
Cetan	44	53	> 51
C/H/O	85/13/2 wt.%	86/14/0 wt.%	n.a.
Volatile <350°C	83 wt.%	86 wt.%	> 85 % (v/v)
Sulfur	177 mg/kg	3 mg/kg	< 10 mg/kg

Results from bioCRACK pilot plant and hydrogenation at OMV/Schwechat Feedstock: spruce

bioCRACK - Biochar

Analysis of biomass (spruce) and biochar

		Biomass (spruce)	Biochar
Carbon	[wt.%]	50	81
Hydrogen	[wt.%]	6.3	5.4
Nitrogen	[wt.%]	0.0	0.3
Rest (Oxygen + Ash)	[wt.%]	44.2	13.4

Utilisation:

- ✓ Renewable solid fuel for combustion
- ✓ Additive in steel industry, construction material,....
- ✓ Fertilizer and carbon sink
- ✓ Further upgrading to transportation fuel

bioCRACK - Pyrolysis Oil

Dehydration of bioCRACK pyrolysis oil is possible

		Pyrolysis Oil	Pyrolysis Oil dehydrated	Crude Oil¹
Water Content	[wt.%]	50	8	0.1
Lower Calorific Value	[kJ/kg]	8700	29000	43100
Carbon	[wt.%]	22	72	83 - 86
Hydrogen	[wt.%]	10	9	11 - 14
Oxygen	[wt.%]	68	19	<1
Nitrogen	[wt.%]	<1	<1	<1

Utilisation: ✓ Renewable liquid fuel for combustion

¹Mortensen et al., Applied Catalysis A: General, 407 (2011)

✓ Source for chemicals

✓ Further upgrading to transportation fuel

GHG Calculation according to EU-Directive

Source: EU-Directive on Renewable Energy, Brussel 5. June 2009

$$E = e_{ec} + e_{I} + e_{p} + e_{td} + e_{u} - e_{sca} - e_{ccs} - e_{ccr} - e_{ee} [g CO_{2}-eq/MJ_{biofuel}]$$

$$E = (E_{fossil} - E_{biofuel}) / E_{fossil} [\%]$$

$$E > 35\% (2017: > 50\%; 2018^*): > 60\%) *_{new biofuel plants}$$

= total emissions from the use of the biofuel;

= emissions from the extraction or cultivation of raw materials;

= annualized emissions from carbon stock changes caused by land-use change;

= emissions from processing;

= emissions from transport and distribution;

= emissions from the fuel in use;

e_{sca} = emission saving from soil carbon accumulation via improved agricult. management;

 e_{ccs} = emission saving from carbon capture and geological storage;

e_{ccr} = emission saving from carbon capture and replacement; and

e_{ee} = emission saving from excess electricity from cogeneration.

Emissions from the manufacture of machinery and equipment shall not be taken into account

Comparison to Other Biofuels in Austria

bioCRACK Industrial Scale - Layout

- Capacity:
 - 400.000 to/y BM
 - → 60.000 to/y biofuels
 - Total Area: 235.000m²
- Area I:

Multi-Feedstock biomass feedstock preparation,

Area II:

bioCrack Refining 1-4, Product treatment (BCO, FCO, PYO), TOL Conditioning

Area III:

Energy central station, bioChar treatment

bioCRACK - Added Value

Estimated added Value of the conversion products from wood:

Stream	Annual Demand t	Price per t		Cost/Revenue p.a	
Wood	360.000	€	100	€	36.000.000
bio Naptha	19.000	€	850	€	16.150.000
bio Gasoil	44.000	€	1.100	€	48.400.000
bio Char	100.000	€	60	€	6.000.000
Pyrolysis Oil raw	137.000	€	90	€	12.330.000
Gases	60.000	€	-	€	-
Added Value p.a.				€	46.880.000

Example integration bioCRACK in OMV refinery concept:

- general increase of fuel production from VGO by + 5%
- Shift in fuel distribution from petrol (-11%) to diesel (+25%) and kerosene (+15%)

Estimated Capex 400.000 t p.a. biomass: 200 - 300 Mio €

Preliminary estimated data in cooperation OMV and Joanneum Research

Ongoing Research & Development

bioCRACK Outlook

- Completion of r&d project: 2015
- After successful completion:
 - Up-scaling to demonstration plant
 → financing (VC, EU-NER300, ?)
 - GHG-saving potential
 - Profitable implementation in refineries
 - Licensing
- Extension project "bioBOOST": value-adding utilization of side-product streams

from Vaste an 180° Paragraph of the company of the

BDI – BioEnergy International AG
Parkring 18
8074 Raaba-Grambach
T +43 316 4009 100

<u>sales@bdi-bioenergy.com</u> <u>www.bdi-bioenergy.com</u>

