

Optimierung von Energieversorgungssystemen unter Einbezug von Investitions- und Einsatzentscheidungen

- am Beispiel von gewerblichen Verbrauchern

Tom Karras¹, Hendrik Kondziella¹, Krischan Keitsch¹ Prof. Dr. Thomas Bruckner^{1,2}, Fabian Scheller²

14. Symposium Energieinnovation, 10.02.-12.02.2016, TU Graz

¹ Fraunhofer MOEZ

seit 2.7.2015 Fraunhofer-Zentrum für Internationales Management und Wissensökonomie Gruppe Energiemanagement und -wirtschaft

² Professur für Energiemanagement und Nachhaltigkeit Insitut für Infrastruktur- und Ressourcenmanagement Universität Leipzig

DER-Technologien vs. aktuelle Geschäftsmodelle

Politische und gesellschaftliche Forcierung des Ausbaus dezentraler Energieerzeugungsanlagen (DER)

(Nationalen Aktionsplans Energieeffizienz, 10 Punkte-Energie-Agenda des BMWi)

Kunden werden zu Prosumern (Klose et al. 2010)

- Erzeugen teil ihres Energiebedarfs selbst
- Reduzieren konventionellen Energiebedarf

Energiedienstleistungen für DER notwendig (Blümer et al. 2005)

Paradoxon der gesteigerten Energieeffizienz für Energieversorgungsunternehmen (EVU)

 Weniger konventionell erzeugte Energie benötigt → Erlöse sinken (Richter 2013; Marko 2014)

Zielstellungstellung

Ziel:

- Identifikation der wirtschaftlichen Vorteile durch den Einsatz dezentraler Anlagen
- Kundenvorteile anhand eines
 Optimierungsmodell identifizieren

Kundengruppen:

- Gewerbekunden
- Die potentielle Kundengruppen für Energiedienstleistungen sind die Kunden der mittleren Größe wie kleine und mittelständische Gewerbebetriebe. (Marko 2014, S.11)
- Kleine und mittlere Gewerbebetriebe (Mitarbeiter 20-50 MA) (Sorrell 2007, S. 520)

Forschungsfrage

Für welche Kundengruppen bieten sich kundenorientierte Geschäftsmodelle in Verbindung mit dezentralen Technologien an?

Methodik

<u>Szenarien</u>

- Kosten ohne DER
- Kosten mit DER
- Tarif-Varianten

3. Optimierungsergebnisse

Technologieauswahl

Gesamte Energiebezug-kosten

1. Literaturanalyse

Herausforderungen Geschäftsmodelle

> Investitionsmodelle

2. Entscheidungsmodell

Mathematisches

Datenaufbereitung

Modell

Modellannahmen

Existierende Investitionsmodelle für DER:

Ren & Gao 2010: Kostenminimale Bereitstellung der Energie für einen Öko-Campus

(Batteriespeicher, Kälteanlage, Gas-Boiler, PV, Wind, Gas-BHKW)

Ruan et al. 2009: Kostenminimale Bereitstellung der Energie für 6 verbundene Microgrids

(BHKW, Wärmepumpe, Windturbine, Solarkollektor, PV, Boiler)

Omu et al. 2013: Kostenminimale Bereitstellung der Energie für 4 einzelne Gewerbekunden

(BHKW mit 4 Betriebsarten - Gas, Diesel, Brennstoffzelle, Gasturbine)

Investitionsmodell IRPinv (Integrierte Ressourcen Planung und Investitionskostenoptimierung)

- Sieben verschiedene Technologien
 - thermisch: Wärmepumpe,
 Blockheizkraftwerk (BHKW), Elektro-Boiler,
 Erdgas-Boiler
 - Elektrische: Photovoltaik (PV), BHKW
 - Speicher: thermisch und elektrisch
- 13 verschiedener gewerbliche Kundengruppen
- ¼ Stündliche Auflösung

- Mixed Integer Linear Programming
 - Branch-and-Cut Lösungsansatz
- Entscheidungskriterium:
 - minimale Energiebezugskosten
- General Algebraic Modeling System (GAMS)
 - Solver: CPLEX
 - Komplexe Modelle kompakt darstellbar
 - Einfache Veränderung und Erweiterung

Modellkonzept

DER-Technologien

- Investitions-, Betriebs- und Wartungskosten
- Wirkungsgrad, Lebensdauer

Kundengruppen

- Elektrische Last
- Thermische Last

Marktseitig

- Elektrischer Tarif
- Thermischer Energietarif
- Gastarif
- Netzentgelte

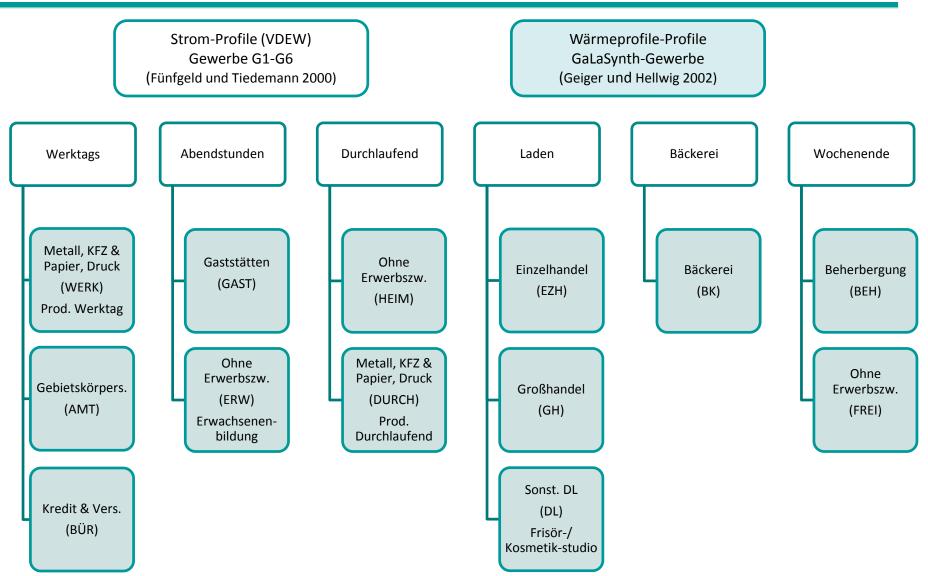
Politikseitig

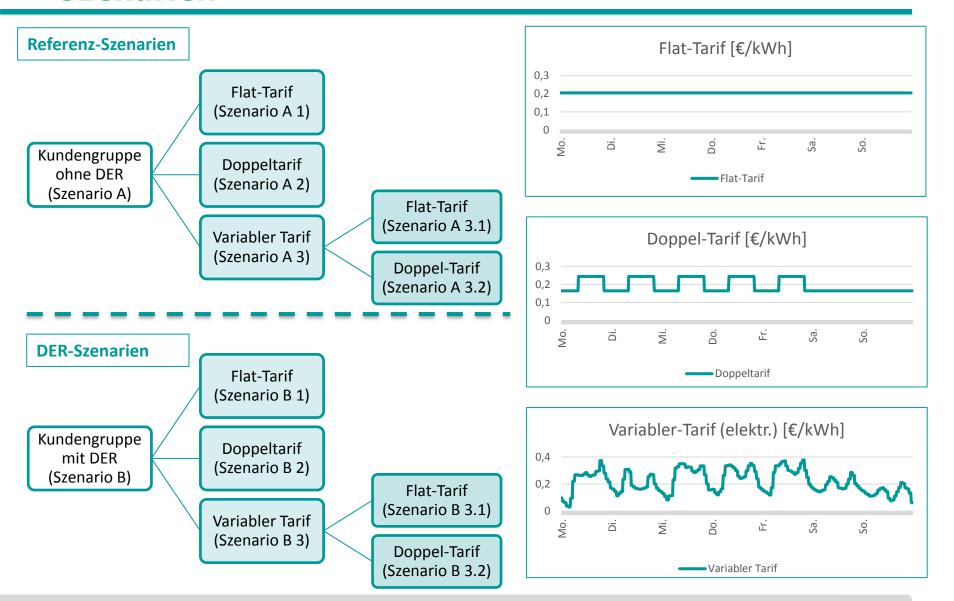
- Anlagenförderung
- Einspeisevergütung

IRPinv

(Optimierungsmodell)

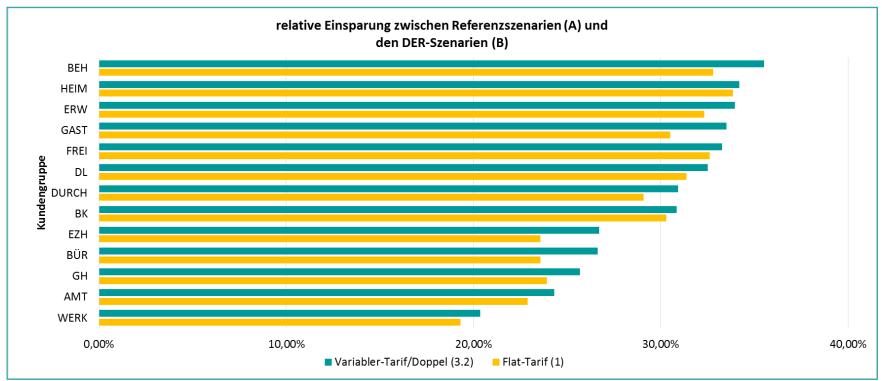
Umweltseitig


- Globalstrahlung
- Außentemperatur


<u>Output</u>

- •Minimierung der gesamten Energiebezugskosten
- Auswahl der kostenoptimalen DER-Anlage
- •Dimensionierung der DER-Anlage
- Optimierung des Betriebs der DER-Anlage

Kundengruppen


Szenarien

Szenario Doppeltarif Variabler Tarif Doppeltarif

9

Kosteneinsparungen

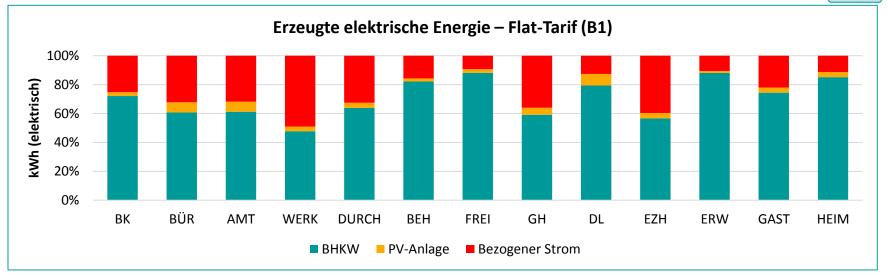
Kundengruppe	Abkürzung	Kundengruppe	Abkürzung	Kundengruppe	Abkürzung
Bäckerei	ВК	Gaststätte	GAST	Heime, Pflegeeinrichtungen	HEIM
Behörde	AMT	Beherbergung	BEH	Erwachsenenbildung	ERW
Büro	BÜR	Freizeiteinrichtung	FREI	Frisör-/ Kosmetikstudio	
Einzelhandel	EZH	Prod. Gewerbe (Werktag)	WERK		
Großhandel	GH	Prod. Gewerbe (Durchlaufend)	DURCH		

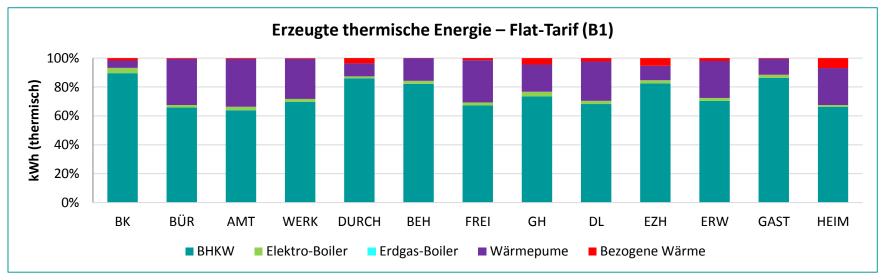
Technologieauswahl (Erzeugungsanlagen)

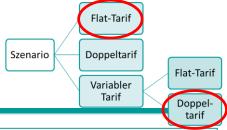
Flat-Tarif

Doppeltarif

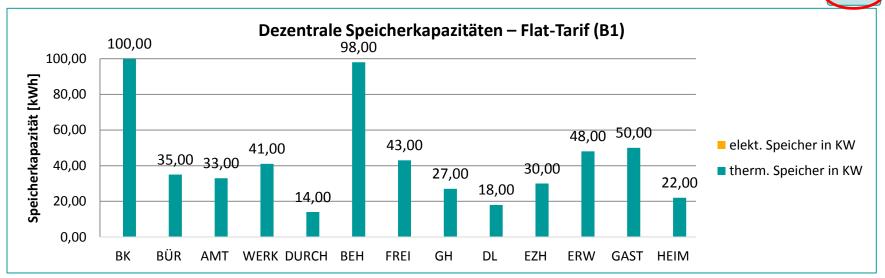
Variabler

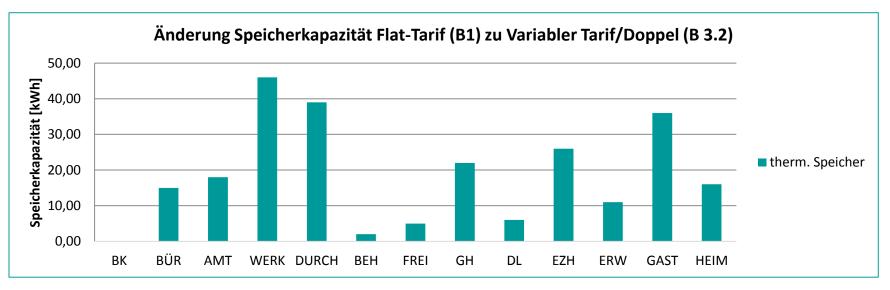

Tarif


Szenario


Doppeltarif

10


Flat-Tarif



Technologieauswahl (Speicher)

Fazit

- Kosteneinsparungen für alle Kundengruppen durch DER-Anlagen möglich
 - Spanne zwischen 18% und 36%
 - Die beiden variablen Tarife (B 3.1 und B 3.2) ergeben höchste relative Kosteneinsparungen
- BHKW-Technologie im Kombination mit thermischem Speicher bevorzugte Technologien
 - Durch die Änderung der Tarife erhöht sich die Bedeutung dieser beiden Technologien
 - Wärmepumpen und PV-Anlagen zusätzlich relevant zur dezentralen Energieerzeugung
- Limitationen des Modells
 - Hohe Flexibilität in der Modellierung des BHKWs (keine Anfahrtsbeschränkungen, keine Grenze der Jahresbetriebsstunden)
 - Speichermodell enthält Kapazitätsgrenzen, aber keine Leistungsbeschränkungen
 - Festgesetzte technische und ökonomische Parameter → Sensitivitätsanalyse zeigte veränderte Ergebnisse
 - Nur ökonomische Aspekte relevant, keine Berücksichtigung der ökologischen Wirkung

Fragen und Diskussion

Kontaktdaten:

Tom Karras Fraunhofer MOEZ, seit 2.7.2015 Fraunhofer-Zentrum für Internationales Management und Wissensökonomie

Gruppe Energiemanagement und -wirtschaft Städtisches Kaufhaus, Neumarkt 9-19, 04109 Leipzig

<u>tom.karras@moez.fraunhofer.de</u> <u>www.moez.fraunhofer.de</u>

Quellenangaben

Blümer, Dietmas; Bredel-Schürmann, Stefan; Diener, Martin; Gayer, Alfred; Henninger, Jürgen; Hunke, Dirk et al. (2005): Dienstleistungs und Finanzierungsangebote von Energieversorgungsunternehmen. Contracting. Hg. v. Arbeitsgemeinschaft für Sparsamen und Umweltfreundlichen Energieverbrauch e.V. ASUE-Arbeitskreis "Energiedienstleistungen". Kaiserslautern.

Energinet.dk (2015): *Spotmarktpreis für Deutschland*. Zeitraum vom 01.01.2013 bis 31.12.2013, in: http://www.energinet.dk/EN/El/Engrosmarked/Udtraek-af-markedsdata/Sider/default.aspx geprüft 12.11.15.

Eurostat (2015): *Kleine und mittlere Unternehmen (KMU).* Daten, in: http://ec.europa.eu/eurostat/web/structural-business-statistics/structural-business-statistics/sme geprüft 13.08.15.

Fünfgelt, C. and Tiedemann, R. (2000), Anwendung der Repräsentativen VDEW-Lastprofile: step-by-step, Cottbus.

Hellwig, M. (2003): Entwicklung und Anwendung parametrisierter Standard-Lastprofile, München, Institut für EnergietechnikTechnische Universität München, Dissertation, 2003.

Hillemacher, Lutz; Nolden, Christoph; Bertsch, Valentin und Fichtner, Wolf (2013): Lastverlagerungspotenziale durch variable Stromtarife - Ergebnisse eines Feldtests, In: 8. Internationale Energiewirtschaftstagung, Wien.

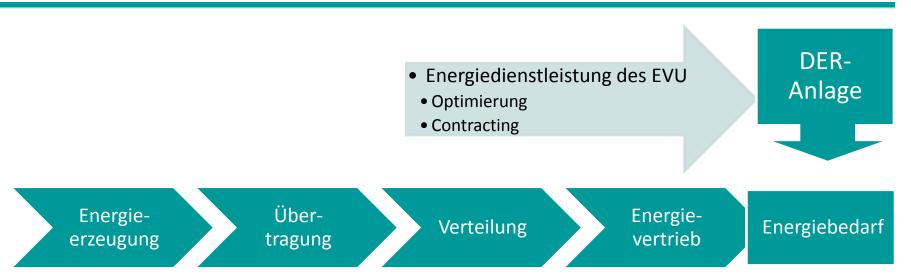
Klose, Frank; Kofluk, Michael; Lehrke, Stephan; Rubner, Harald (2010): Toward a Distributed-Power World: Renewables and Smart Grids Will Reshape the Energy Sector. Hg. v. Boston Consulting Group. Boston Consulting Group. o.A.

Marko; Wolfgang Arthur (2014): Small-Scale, Big Impact - Utilities New Business Models for "Energiewende". Graz (13. Symposium Energieinnovation 2014).

Quellenangaben

Omu, Akomeno; Choudhary, Ruchi; Boies, Adam (2013): Distributed energy resource system optimisation using mixed integer linear programming. In: *Energy Policy 61, S. 249–266. DOI: 10.1016/j.enpol.2013.05.009.*

Ren, Hongbo; Gao, Weijun (2010): A MILP model for integrated plan and evaluation of distributed energy systems. In: *Applied Energy 87 (3), S. 1001–1014. DOI: 10.1016/j.apenergy.2009.09.023.*


Ruan, Yingjun; Liu, Qingrong; Zhou, Weiguo; Firestone, Ryan; Gao, Weijun und Watanabe, Toshiyuki (2009): Optimal option of distributed generation technologies for various commercial buildings, Applied Energy (86), Nr. 9, S.1641–1653.

Richter, Mario (2013): Business model innovation for sustainable energy: German utilities and renewable energy. In: *Energy Policy 62, S. 1226–1237. DOI: 10.1016/j.enpol.2013.05.038*.

Schlomann, Babara; Wohlfarth, Katharina; Kleeberger, Heinrich; Hardi, Lukas; Geiger, Bernd; Pich, Antje et al. (2015): Energieverbrauch des Sektors Gewerbe, Handel, Dienstleistungen (GHD) in Deutschland für die Jahre 2011 bis 2013. Hg. v. Bundesministerium für Wirtschaft und Technologie (BMWi). IREES GmbH; Fraunhofer Institut für Systemtechnik und Innovationsforschung; GfK Retail and Technology GmbH; Lehrstuhl für Energiewirtschaft und Anwendungstechnik. Karlsruhe, München, Nürnberg.

Sorrell, Steve (2007): The economics of energy service contracts. In: *Energy Policy 35 (1), S. 507–521. DOI:* 10.1016/j.enpol.2005.12.009.

DER-Technologien vs. aktuelle Geschäftsmodelle

Quelle: eigene Darstellung in Anlehnung an Valocci et al. 2010, S.4

- Kundenorientierte Geschäftsmodelle notwendig (Graf Kerssenbrock & Ploss 2011, S.73-74.)
- Erweitertes Dienstleistungsanagebot für DER-Anlagen (Bülmer et al. 2005, S. 11)
- Kommerzialisierung für EVU durch Contracting (Gsodam & Bachhiesel 2015, S.8)

Forschungsfragen

Theoretische Grundlagen

- Welche Auswirkungen haben DER auf das Geschäftsmodell der EVU?
- Welche Contracting-Modelle gibt es?

Investitonsmodell

• Welche kundenseitigen Investitonsmodelle gibt es für DER?

Optimierungsmodell

- Welche Energiebezugskosten ergeben sich für die Kundengruppe?
- Welche Kundengruppe wählt welche Technologie?
- Wie muss die jeweilige Technologie für die Kundengruppe dimensioniert sein?
- Wie muss die DER über ein Jahr betrieben werden?

Datengrundlagen

- Welche Kundengruppen können identifiziert werden?
- Welche Input-Datein werden benötigt

Mathematisches Modell

Zielfunktion:

$$\min \left\{ C_{total} = \sum_{s} \sum_{t} \sum_{m} \sum_{u} \sum_{k} \left(C_{s,k}^{\mathit{INV}} + C_{s,k}^{\mathit{INS}} + C_{s,k}^{\mathit{O&M}} + F_{s,t,u}^{\mathit{CONT}} + F_{s,m,u}^{\mathit{CAPA}} + F_{s,m,u}^{\mathit{BASIC}} - F_{s,t,u,k}^{\mathit{FEED}} \right) \right\}$$

t= Zeitschritt; k= DER-Technologie; u= Energieform (Strom, Wärme, Gas); s= Tarifsichtweise (Netz-, Vertriebs- und Marktseite); m= Monate

F^{CONT}= Arbeitspreis; F^{BASIC} = Basispreis; F^{CAPA} = Kapazitätspreis; F^{FEED} = Einspeisevergütung

C^{INV} = Investitionskosten; C^{INS} = Installationskosten; C^{O&M} = Wartungskosten

I^P = Leistungsförderung pro installierter kW; I^{GEN} = Förderung pro installierter Anlage

Nebenbedingung:

Energiebalance: Die Nachfrage muss zu jedem Zeitpunkt gedeckt sein

Boilermodell: Kapazitätsbeschränkung, Wirkungsgrad

PV-Modell: Kapazitätsbeschränkung, Abhängig von Modulfläche, Globalstrahlung und Wirkungsgrad

BHKW-Modell: Kapazitäsbeschränkung, Strom-Wärme-Verhältnis

■ Wärmepumpenmodell: Kapazitätsbeschränkung, Abhängig von Performance-Koeffizient und Temperatur

Speichermodell: Speicherstand, Speicherkapazität, End- und Anfangsspeicherstand

Elektrische Lastprofile der Kundengruppen

VDEW-Profile

- VDEW-Profile der Stadtwerke Unna (G1-G6)
- 3 Typ-Tage (Werktag, Samstag, Sonntag)

Ausrollen für 2013

• Ausrollen der einzelnen Profile für Kalender 2013 (inklusive Feiertage/Sachsen)

Jahresverbrauch

- Extrahieren der spezifische Verbräuche (pro MA) für 2013 (Schlomann et al. 2015, S.42)
- Berechnen der Jahresverbräuche anhand durchschnittlicher MA-Anzahl (Eurostat)

Skalierungs -faktor

- SLP Stadtwerke Unna = normiert → Aufsummieren der Viertelstundenwerte
- Skalierungsfaktor = Jahresverbrauch (Schlomann) / Jahreswerwert (Unna)

SLP-Profil

• Multiplizieren der Viertelstundenwerte (Unna) mit dem Skalierungsfaktor

Technologiedaten (ökonomisch)

Technologie	Kosten/ KW in (€/KW) Brutto par_C_DES_Cap	Anteilige Installationskosten (in %) par_C_DES_Ins	Anteilige Wartungsskosten (in %) par_C_DES_OuM
Photovoltaik *	1.468,84 ^{1,2}	15,0% ⁴	2,30% ^{2,3}
Blockheizkraftwerk	1.978,56 ⁵	9,0%5	8,00% ⁶
Erdgas-Boiler	139,36 ^{7,8}	26,5% ^{9,10}	3,00%6
Elektro-Boiler	27,01 ¹¹	45,0% ¹²	2,00% ^{6,3}
Wärmepumpe	963,68 13,14,8	18,6% ¹⁵	2,50% ⁶
thermischer Speicher**	123,00 ¹⁶	14,1% ¹⁷	2,00% ⁶
elektrischer Speicher**	2.921,20 18, 19,20	3,7% ²⁰	2,00% ²⁰

^{*} PV = Kosten (€)/Modul

1= solar-pur AG 2012; 2=Kost et al. 2013, S. 10–11; 3=Pleßmann et al. 2014, S. 25; 4= Zahn 2015; 5= Klein et al. 2014, S. 7; 6= VDI 2012; 7= Eco Energy Group 2015; Ehrecke-Krüger Haustechnik GmbH 2015; Concepte24 GmbH 2015; 8=Thiele & Ehrlich 2012; 9= Salmen o.A.; 10= Weißmann GmbH 2015; 11= Siemens o.Aa, o.Ab; CLAGE GmbH 2015; Zanker 2015; TECHNOTHERM International 2015; 12= Bockhorst 2010; 13= Pestalozzi Haustechnik 2014; Arthur Weber 2012; 14= International Energy Agency 2011, S. 17); 15= Waermepumpen.info o.A; 16= heizfaktor.de 2015; Löbbe GmbH 2015; Raatschen GmbH 2015; 17= Wilhelms et al. 2008, S. 4; 18= Heidjann 2015; 19= IEA 2014, S.18; 20= IE Leipzig 2014, S. 13

^{**} Speicher = Kosten (€)/kWh

Energietarife

Beschreibung Zeitraum Arbeitspreis unterteilt in Vertriebspreise und Netzentgelte Flat-Tarif (Bundesnetzagentur und Bundeskartellamt 2014; AGFW, 2014) Mo.-So. (0.00 -24.00 Uhr) Monats und Leistungspreis (Stadwerke Leipzig GmbH 2015; RheinEnergie AG 2015; Mainova AG 2015) Mo.-Fr. Doppeltarif nur f ür den Arbeitspreis (elektrisch, thermisch, Gas) Doppeltarif (8.00-20.00 Uhr) Prozentuale Änderungen des Flat-Tarifes (Hayn et al. 2014; Dütschke et al. 2012; Hillemacher et al. 2013) Sa. & So. +19% Hochtarif (Tag) + Mo.-Fr. (20.00-8.00) - 20% Niedrigtarif (Nacht) **Variabler Tarif** Nur elektrischer Arbeitspreis variabel • Flat-Tarif (Elektrisch) (Gas und thermischer Tarif) Elektrische Spotmarktpreise für das Jahr 2013 (Energinet.dk 2015) Anteil des Spotmarktpreises entspricht 14% des Arbeitspreises Doppeltarif (Flat-Tarif) (Bundesnetzagentur und Bundeskartellamt 2014) Gas und thermischer Tarif) restliche 86% werden bei Spotmarktpreis aufgeschlagen •

Energietarife – Flat- und Doppeltarif

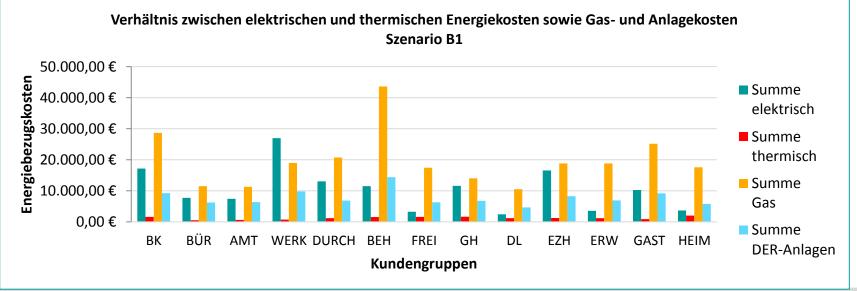
Elektrischer Tarife:

Tarifvariante	Zeitraum	Arbeitspreis ¹ (€/kWh)		Monats-	Leistungspreis ² (€/KWp*m)	
_		Beschaffungspreis	Netzanteil ¹	preis ² (€/m)	Beschaffungspreis	Netzanteil ¹
Flat-Tarif	MoSo. (0:00 -24:00 Uhr)	0,205	0,063	11,751	8,572	3,541
Doppeltarif ³	MoFr. (8:00-20:00)	0,244	0,075	11,751	8,572	3,541
	Sa. & So. + MoFr. (20:00 -8:00)	0,164	0,050	11,751	8,572	3,541

¹ Arbeitspreis und Anteil Netzentgelte (Bundesnetzagentur und Bundeskartellamt 2014, S. 140)

- +19% Hochtarif (Tag)
- 20% Niedrigtarif (Nacht)


² Monats und Leistungspreis (Stadwerke Leipzig GmbH 2015; RheinEnergie AG 2015; Mainova AG 2015)


³ Prozentuale Änderungen des Flat-Tarifes (Hayn et al. 2014,S. 253; Dütschke et al. 2012, S. 12; Hillemacher et al. 2013, S. 5)

Szenario Doppeltarif Variabler Tarif

Energiebezugskosten

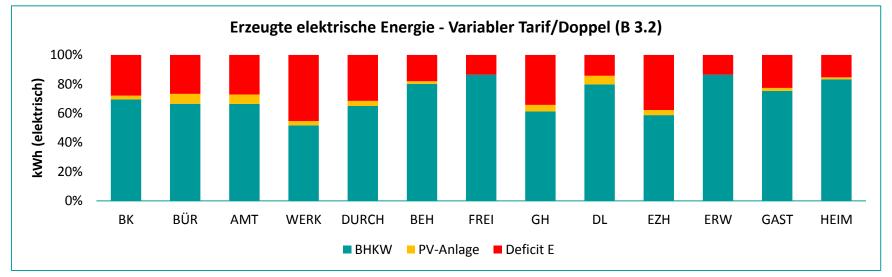
Flat-Tarif Doppeltarif

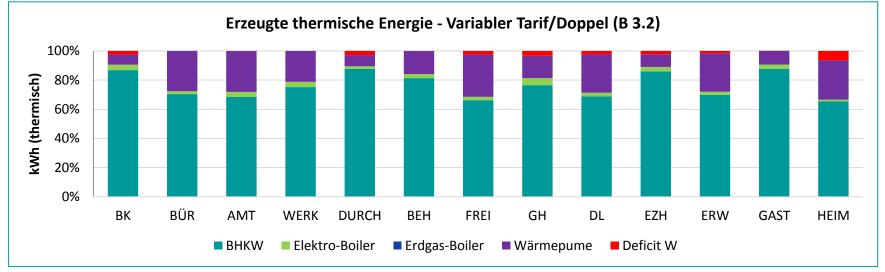
Technologieauswahl (Erzeugungsanlagen)

Flat-Tarif

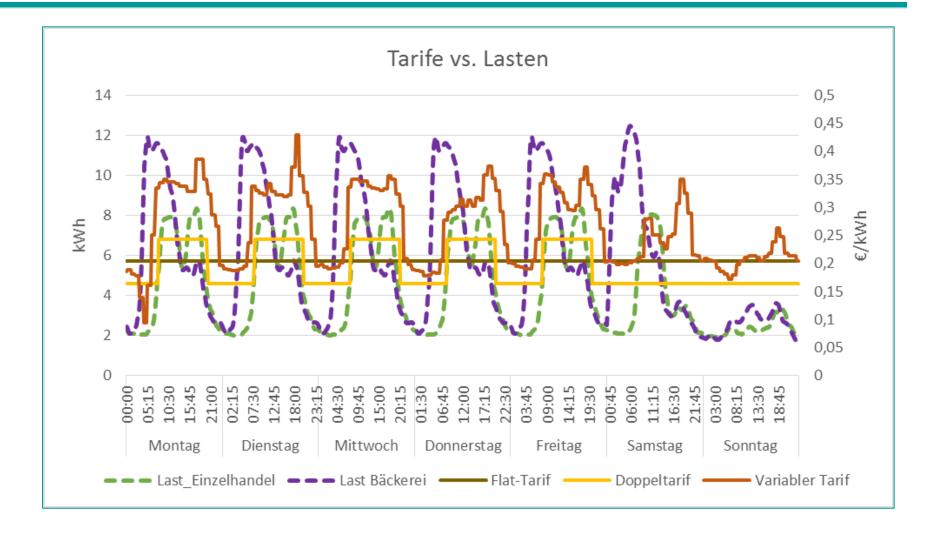
Doppeltarif

Variabler


Tarif


Szenario

Doppeltarif


24

Flat-Tarif

Tarife vs. Lasten

