METHODOLOGY FOR EXTRACTING DYNAMIC STANDARD LOAD PROFILES FROM SMART METER DATA

Krischan Keitsch¹

¹Fraunhofer Zentrum für Internationales Management und Wissensökonomie Abteilung Energiemanagement und Energiewirtschaft

14. SYMPOSIUM ENERGIEINNOVATION, 2016

Gliederung

- Motivation
 - Energiewende
 - Standard Load Profiles
- Methoden
 - Datenanalyse und Datenaufbereitung
 - Clustering
 - Lastsynthese und Evaluation
 - Dynamisierungsfunktion
 - Parameter Optimierung
- Ergebnisse
 - Cluster
 - Lastverlauf
 - Metriken

Energiewelt im Wandel

- BMWi Weißbuch: "Ein Strommarkt für die Energiewende" [1]
 - Bilanzkreistreue
 - Reduktion von Reserveenergievorhaltung
- Refernetenentwurf: "Digitalisierung der Energiewende" [2]
 - Smart Meter Rollout
 - Verbrauch < 6 000 kWh/a ausgenommen

Standard Load Profiles

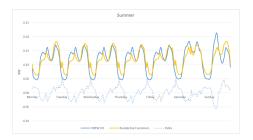


Abbildung: Vergleich des elektrischen Bedarfs von Haushaltskunden aus einem aktuellen Projekt [8] und dem Standardlastprofil "H0".

- Abschätzung des elektrischen Bedarf bei Kunden über Standardlastprofile (SLP) [9]
- SLP für Haushaltskunden und diverse Gewerbeklassen
- Neue SLP? Änderungen im Verbrauchsverhalten, steigende Energieeffizienz und Eigenverbrauch [5, 4]

Der CER Datensatz Irish Commission for Energy Regulation (CER)

Time frame	Resolution	Total of Profiles	Residential	SME	Other
14.07.2009					
-	0.5 h	6445	4225	485	1735
31.12.2010					

Tabelle : Zusammensetzung des Datensatzes des CER Smart Metering Projects [3]

Die elektrische Last 2010 Darstellung mit allen Profilen

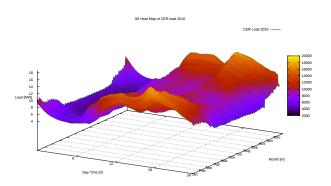


Abbildung : Darstellung der elektrischen Last für das Jahr 2010 der Haushalts- und Gewerbekunden des CER Projekts.

Definition der Saison

Season	Sub- Season	Begin	End	Duration [d]	
Winter	Winter 1	January 1st	February 28th	136	
	Winter 2	October 16th	December 31st		
Transition	Spring March 1st April 15th		91		
	Fall September 1st October 15th				
Summer	Summer	April 16th	August 31st	138	

Tabelle : Dauer und Beginn der Saison. Die Saison Frühling und Herbst werden zusammengefasst.

Definition der Typtage

Weekday	Type day	
Mon day	Мо	
Tuesday		
Wednesday	TuWeTh	
Thursday		
Friday	Fr	
Saturday	Sa	
Sunday	Su	

- Kalenderinformation notwendig
- Feiertage werden wie Sonntage behandelt
- Brückentage können als Samstage behandelt werden
- Kombination von DiMiDo

Clustern der Datensatzes mit k-means

- k-means ist bewährt und hochperformant [6].
- Finden des globales Optimums nicht garantiert
- Iterativer Ansatz wird verfolgt
- Anzahl der Cluster muss vorgegeben werden

Erstellen von synthetischen Lasten mit SLP

- Ausrollen der Standardlastprofile unter Berücksichtigung des Kalenders
- Skalierung der normierten SLP auf den Jahresverbrauch des Kundensegments

Evaluation der Qualität des Clusterings mit Bewertungsmetriken

normalized rooted mean square error

$$nrmse = \sqrt{\frac{\displaystyle\sum_{t=1}^{n}(\overline{y}_{t}-y_{t})^{2}}{\displaystyle\sum_{t=1}^{n}y_{t}^{2}}}$$

Legende:

 y_t : Ist-Last am Zeitpunkt t

 \overline{y}_t : progn. Last am Zeitpunkt t

t: Zeitschritte [h]

n: max. Anzahl Zeitschritte

mean average percentage error

$$mape = \frac{1}{n} \sum_{t=1}^{n} |\frac{\overline{y}_{t} - y_{t}}{y_{t}}|$$

Die Dynamisierungsfunktionen

$$x = x_0 \left(\frac{\cos(\frac{\pi}{t_{ges}} \cdot (2t + A))}{B} + C \right) \tag{1}$$

$$x = x_0(-A \cdot t^4 + B \cdot t^3 - C \cdot t^2 + D \cdot t + E)$$
 (2)

$$x = x_0(-A \cdot t^6 + B \cdot t^5 - C \cdot t^4 + D \cdot t^3 - E \cdot t^2 + F \cdot t + G)$$
 (3)

Normalisierung der Profile

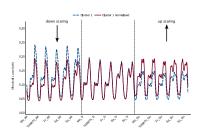


Abbildung : Darstellung der saisonalen Normierung.

Normalisierung $I_{lp} = \sum_{t=1}^{t_{end}} lp_t \qquad (4)$ $m_{season} = max(lp_{t,season}) \qquad (5)$

$$lp_{t,season}^{1kW_{norm}} = \frac{lp_{t,season}}{m_{season}}$$
 (6)

$$I_{lp}^{1kW_{norm}} = \sum_{t=1}^{t_{end}^{season}} Ip_{t,season}^{1kW_{norm}} \tag{7}$$

$$Ip_t^{norm} = \frac{Ip_{t,season}^{1kW_{norm}}}{I_{lp}^{1kW_{norm}}} \cdot I_{lp}$$
 (8)

Nicht Lineare Optimierung Bsp. Polynom

Polynomial Function of Grade 4

$$nrmse_{k} = \sqrt{\frac{\sum_{t=1}^{n} (lp_{k}^{norm} \cdot (\sum_{n=1}^{m} a_{n}x^{n}) - y_{t})^{2}}{\sum_{t=1}^{n} y_{t}^{2}}}$$
(9)

$$nrmse_k \rightarrow min$$
 (10)

$$nrmse = \frac{\sum_{k=1}^{p} nrmse_k}{k}$$
 (11)

Evolutionsstrategie Ein Mitglied aus der Familie der Evolutionären Algorithmen

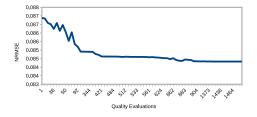


Abbildung : Exemplarische Darstellung der Qualitätsentwicklung während der ES-Optimierung.

- Biologische Evolution als Vorbild [7]
- Multi-Populationsansatz
- gut geeignet für nicht-lineare Optimierungsprobleme

Identifikation von zwei Clustern

1) k=2 vor Dynamisierung

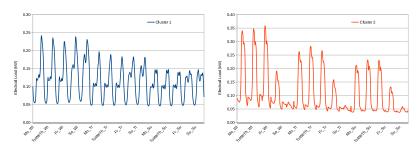
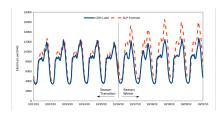


Abbildung: SLP für Haushaltskunden (links) und Gewerbekunden (rechts).


Identifikation von zwei Clustern

2) Vergleich Meta-Daten

	Cluster1	Cluster ₂
Members (from total 6435)	5950	485
Percentage of total CER load	80.24%	19.76%
residential profiles	4190	35
SME profiles	166	319
other profiles	1594	131

Tabelle : Auswertung der Meta-Daten und der Cluster Ergebnisse.

Vergleich der Lastkurven Original vs. synthetische Last & Dynamisierung

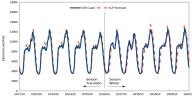


Abbildung : Vergleich des Lastverlaufs mit dem synthetischen Profil.

Links: ohne Dynamisierung, Rechts: mit optimierter

Dynamisierungsfunktion

Ergebnisse Part 1 - Evaluations- Metriken

Year 2010	NRMSE		MAPE			
Dyn.Func.	base	peak	off peak	base	peak	off peak
none	0.10708	0.09964	0.12406	8.40%	7.26%	9.53%
least square 4	0.15260	0.14370	0.17327	13.98%	12.85%	15.12%
least square 6	0.15247	0.14355	0.17317	13.96%	12.85%	15.12%
cos	0.07965	0.06874	0.10234	6.76%	5.49%	8.04%
poly4	0.07639	0.06486	0.09995	6.57%	5.17%	7.97%
poly6	0.09299	0.08160	0.11714	7.47%	6.23%	8.72%

Table : Vergleich der Qualität der synthetischen Lastprofile mit unterschiedlichen Dynamisierungsfunktionen für zwei Cluster (k=2).

Ergebnisse Part 2 - Cluster Load & Dynamic Function

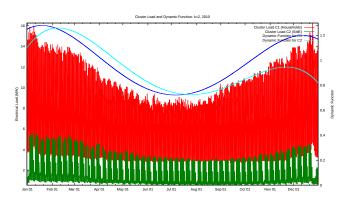


Abbildung: Darstellung des Lastverlaufs der Haushaltskunden (Cluster 1) und der Gewerbekunden (Cluster 2) und die jeweiligen optimierten Dynamisierungsfunktionen.

Zusammenfassung

- Identifikation von Kundengruppen mit individuellen Lastcharakteristika und Verifikation anhand von Meta-Daten
- Erstellung von Standardlastprofilen und synthetischen Lastgängen
- Evaluation und Optimierung von Dynamisierungsfunktionen
- Datenbasis gering; Risiko von "Überanpassung" der Dynamisierungsfunktionen
- Ausblick:
 - Einfluss von Temperatur, Globalstrahlung, ...
 - Finanzielle Bewertung von Prognosefehlern
 - Analyse größerer Datenbasis

Danke und bis bald!

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt[']

Krischan Keitsch

Fraunhofer Zentrum für Internationales Management und

Wissensökonomie

Gruppe "Energiemanagement and Energiewirtschaft"

Telephon: +49 341 23 10 39 - 212

E-Mail: krischan.keitsch@moez.fraunhofer.de

Neumarkt 9-19; 04109 Leipzig Deutschland

www.moez.fraunhofer.de

Literatur I

Bundesministerium für Wirtschaft und Energie BMWi. Ein Strommarkt für die Energiewende (Weissbuch). 2014.

Bundesministerium für Wirtschaft und Energie BMWi. Referentenentwurf Gesetz DIGITALISIERUNG DER ENERGIEWENDE. http://www.bmwi.de/BMWi/Redaktion/PDF/P-R/referentenentwurf-entwurfgesetz-digitalisierung-energiewende, 2015

Comission for Energy Regulation.
Electricity Smart Metering Customer Behaviour Trials (CBT) Findings Report.
2011.

Anton Gerblinger, Michael Finkel, and Rolf Witzmann. Entwicklung und Evaluation von neuen Standardlastprofilen für Haushaltskunden.

2014.

Literatur II

Anton Gerblinger, Michael Finkel, and Rolf Witzmann.

Neuen Standardlastprofile für den Eigenverbrauch von elektrischer Energie bei Haushalt skunden

Energiewirtschaftliche Tagesfragen, 64. Jg. (9), 2014.

J. MacQueen.

Some methods for classification and analysis of multivariate observations. pages 281-297, 1967.

I. Rechenberg.

Evolutionsstrategie 94.

Frommann-Holzboog Verlag, Stuttgart, 1994.

🟲 F. Scheller, K. Keitsch, D. G. Reichelt, S. Dienst, S. Kuehne, H. Kondziella, and T Bruckner

Energieeffizienz und Flexibilitaet der Kunden als Grundlage innovativer Geschaeftsmodelle im Energiemarkt.

BWK, (11), 2015.

Literatur III

Bernd Schieferdecker, C. Funfgeld, H. Meier, and T. Adam.

Repräsentative VDEW-Lastprofile.

VDEW-Materialien M-28/99, Frankfurt, 1999.