

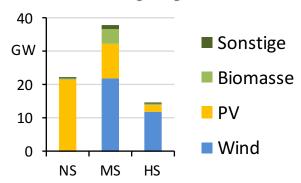
Auswirkungen unterschiedlicher Einspeisemanagementkonzepte auf den Netzausbaubedarf in der Verteilnetzebene

- Hintergrund und Motivation
- Analyse und Modellbildung
- Methodisches Vorgehen
- Exemplarische Untersuchungen
- Zusammenfassung

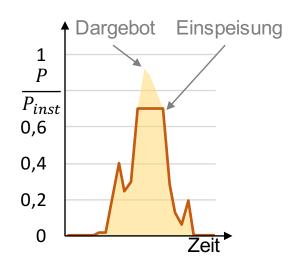
J. Kellermann, P. Larscheid, A. Moser Graz, 11.02.2016

Hintergrund und Motivation

Zubau dezentraler Erzeugungsanlagen


- Großteil der Anlagen ist in Verteilnetzen der Mittel- und Niederspannungsebene (MS/NS) angeschlossen
- → Netzausbaubedarf in einigen Netzregionen

Einspeisemanagement

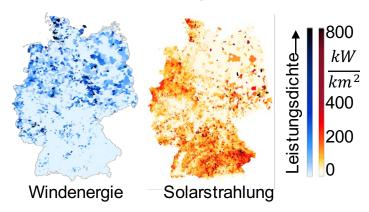

- Abregelung aktuell nur aufgrund von Netzsicherheit
- Berücksichtigung in Netzplanung angekündigt
 - Beschränkt auf gewisse Energiemenge je Anlage
- Unterschiedliche Konzepte denkbar
 - Welche Anlagen werden abgeregelt?
 - Welche IKT-Systeme werden benötigt?
 - Welche Kosten werden verursacht?
- → Methodik zur Untersuchung der Auswirkungen unterschiedlicher Einspeisemanagementkonzepte auf Netzausbaubedarf erforderlich

Installierte Erzeugungskapazität

Quelle: EEG-Anlagenregister, 01.2015

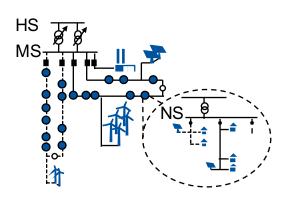
Einspeisemanagement

Analyse und Modellbildung (1/2)


Versorgungsaufgabe

- Auswertung regionaler Erzeugungsstrukturen auf Basis des EEG-Anlagenregisters
 - Regionale Verteilung je Energieträger
 - Spannungsebene des Anlagenanschlusses
 - Anlagengrößen je Typ/Spannungsebene
- → Verteilungsfunktionen der Anlagengröße für Modellierung typischer Versorgungsaufgaben

Netzstruktur

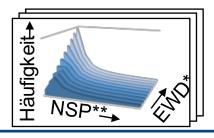

- Spannungsebenübergreifende Modellierung durch radiale MS/NS-Netzstrukturen
- Veröffentlichungspflichten für Netzbetreiber¹
 - Versorgte Fläche/Einwohner/Last
 - Stromkreislänge Kabel/Freileitung
 - Anzahl Entnahmestellen
- → Ableitung von Verteilungsfunktionen der Netzstrukturparameter
 - Abhängig von Einwohnerdichte und Spannungsebene

Installierte Leistungsdichte

Quelle: EEG-Anlagenregister, 01.2015

MS/NS-Netzmodell

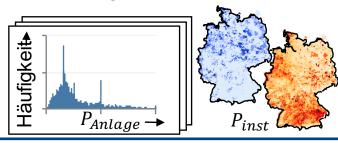
Analyse und Modellbildung (2/2)


- *Einwohnerdichte
- **Netzstrukturparameter

Aufbereitete Eingangsdaten

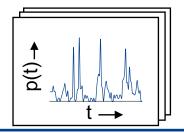
Netzstruktur

Verteilungsfunktionen in Abhängigkeit von


- Einwohnerdichte
- Spannungsebene

Versorgungsaufgabe

Verteilungsfunktionen in Abhängigkeit von

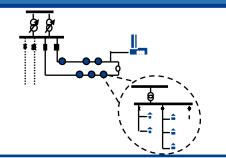

- Energieträger
- Spannungsebene

Zeitreihen

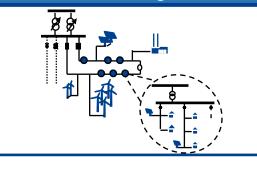
Synthetische Zeitreihen

- EE-Anlagen
- Verbraucher

Zufallsziehungen: Realisierung von Zufallsvariablen


Aufbau Modellnetz

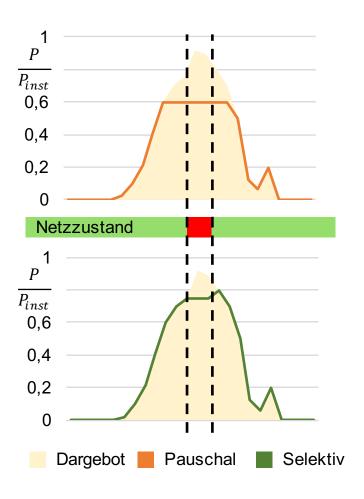
Versorgungsaufgabe


Industriekunden

Anzahl
NS-Netze Haushaltskunden

Netzstruktur

EE-Anlagen

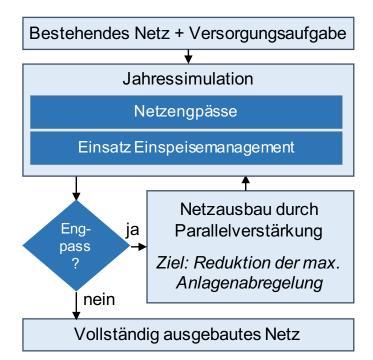


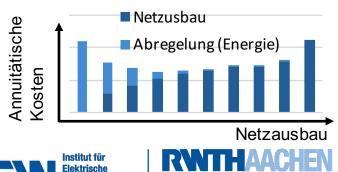
Methodisches Vorgehen (1/2) - Einspeisemanagement

Untersuchte Einspeisemanagementkonzepte

- Pauschale Abregelung
 - Abregelung aller Anlagen bei festgelegter Leistungsgrenze je Technologie
 - Abregelung unabhängig von Netzzustand
- → Bestimmung auf Basis der Einspeisezeitreihen
- Selektive Abregelung
 - Abregelung ausgewählter Anlagen ohne Leistungsgrenze
 - Abregelung abhängig von Netzzustand
- Bestimmung der Abregelung durch Optimal Power Flow (OPF) Algorithmus
- Jahressimulation in stündlichem Zeitraster zur Bestimmung der
 - Spannungsprobleme und Überlastungen im Netz
 - Abgeregelten Energiemenge je Anlage und je Jahr

Exemplarische Abregelung je Konzept




Methodisches Vorgehen (2/2) - Netzausbau

- Netzausbau durch Parallelverstärkung
 - Kabel in MS- und NS-Netzebene
 - MS/NS-Ortsnetztransformator
 - **HS/MS-Transformator**
- Kostenannahmen für Ausbaumaßnahmen analog zu BMWi-Verteilernetzstudie
- Bei pauschalem Einspeisemanagement
 - Ausbau bis alle verbleibenden Engpässe behoben
- Bei selektivem Einspeisemanagement
 - Iterative Durchführung von Jahressimulation und Hinzufügen von Netzausbaumaßnahmen
- Bestimmung des verbleibenden Einspeisemanagements bei fortschreitendem Netzausbau

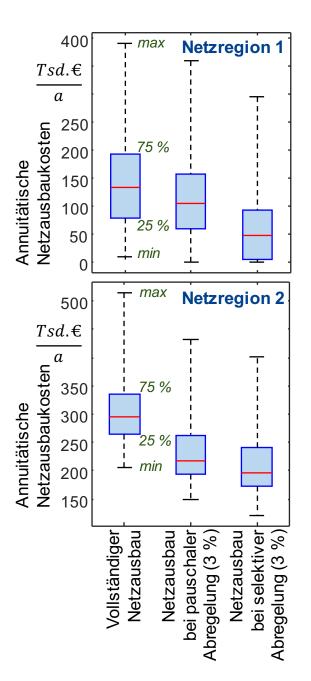
Iterativer Netzausbau

Exemplarisches Ergebnis

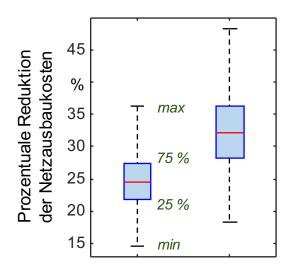
Exemplarische Ergebnisse (1/3) - Untersuchungsprogramm

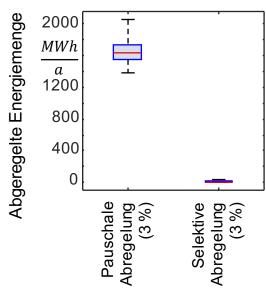
- Untersuchungen für zwei exemplarische Netzregionen
 - Vergleichbare Fläche und Einwohnerdichte
 - Unterschiedliche Erzeugungsstruktur

	Netzregion 1	Netzregion 2
Fläche des Versorgungsgebietes	$158 km^2$	$151 \ km^2$
Durchschnittliche Einwohnerdichte	$75 \; \frac{Einwohner}{km^2}$	$74 \; rac{Einwohner}{km^2}$
EE-Leistungsdichte	$0,45 \; \frac{MW}{km^2}$	$0,34 \; \frac{MW}{km^2}$
Installierte EE-Leistung Biomasse Windkraft Photovoltaik	60 MW 40 30 20 10	60 MW 40 30 20 10
	MS NS	MS NS


 Durchführung von jeweils 300 Simulationen je Netzregion und Einspeisemanagementkonzept

Exemplarische Ergebnisse (2/3)


- Vollständiger Netzausbau
 - Kein Einspeisemanagement erforderlich
- 2. Netzausbau bei pauschaler Abregelung (3 %)
 - Pauschale Abregelung anhand Leistungsgrenze
 - Max. 3% der Jahresenergiemenge je Anlage abgeregelt
- 3. Netzausbau bei selektiver Abregelung (3 %)
 - Selektive Abregelung durch OPF anhand Netzzustand
 - Max. 3% der Jahresenergiemenge je Anlage abgeregelt
- Beide Konzepte reduzieren den Netzausbaubedarf
 - Höhere Reduktion bei selektivem Einspeisemanagement, da gezielte Abregelung ohne Leistungsgrenzen
- Große Streuung der ermittelten Netzausbaukosten
- → Notwendiger Netzausbau hängt stark von konkreter Netzstruktur und Positionierung der Anlagen im Netz ab



Exemplarische Ergebnisse (3/3) – Netzregion 2

- Prozentuale Kostenreduktion im Vergleich zum vollständigen Netzausbau bei selektivem Ansatz (Ø 32 %) höher als bei pauschalem Ansatz (Ø 23 %)
 - Jedoch große Streuung der Ergebnisse
- Wirksamkeit des Einspeisemanagements abh. von
 - Individueller Netzstruktur eines Verteilnetzes
 - Positionierung der Anlagen und Anlagengrößen
- Insgesamt abgeregelte Energiemenge bei selektivem Ansatz deutlich geringer
- → Geringere abgeregelte Energiemenge und höhere Reduktion des Netzausbaubedarfes bei selektivem Ansatz
- Bei Gesamtkostenbetrachtung jedoch weitere Kosten zu berücksichtigen
 - Investitionen in die notwendige IKT-Infrastruktur
 - Betrieb des IKT-Systems

Ergebnisse für Netzregion 2

Zusammenfassung

Motivation

 Entwicklung einer Methodik zur Untersuchung der Wechselwirkungen zwischen Netzausbau und Einspeisemanagement in der Verteilnetzebene

Exemplarische Ergebnisse

- Untersuchte Einspeisemanagementkonzepte (pauschal/selektiv) senken den durch EE-Integration bedingten Netzausbaubedarf
 - Stärkere Reduktion des Ausbaubedarfs bei selektivem Ansatz
 - Deutlich geringere abgeregelte Energiemengen bei selektivem Ansatz
- Reduktion des Netzausbaus jedoch stark abhängig von individueller Netzstruktur und dezentraler Erzeugungsstruktur im Netz

Ausblick

- Untersuchung weiterer Einspeisemanagementkonzepte mit entwickelter Methodik
- Erweiterung der Kostenbetrachtung durch
 - Investitionskosten in IKT-Infrastruktur und Betriebskosten des IKT-Systems
 - Kosten für Ersatzbeschaffung der abgeregelten Energiemenge

Weitere Fragen?

Jan Kellermann

Institut für Elektrische Anlagen und Energiewirtschaft (IAEW), RWTH Aachen University

Tel: +49 (0)241 80-96718

E-Mail: km@iaew.rwth-aachen.de http://www.iaew.rwth-aachen.de

Institutsleiter

Univ.-Prof. Dr.-Ing. Albert Moser

