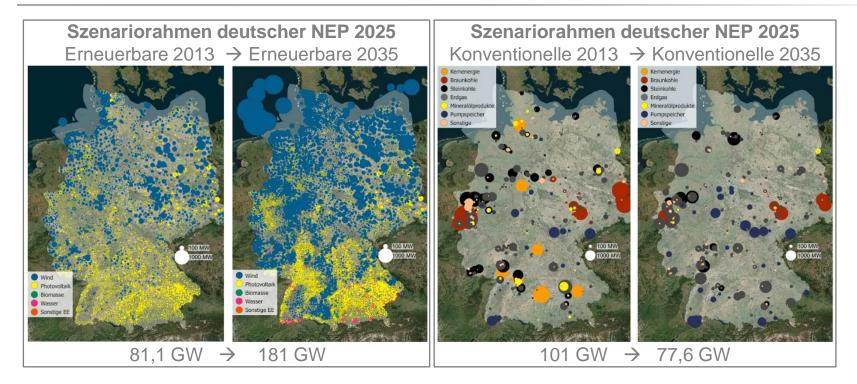

SWARM

Primärregelleistungserbringung mit verteilten Batteriespeichern in Haushalten

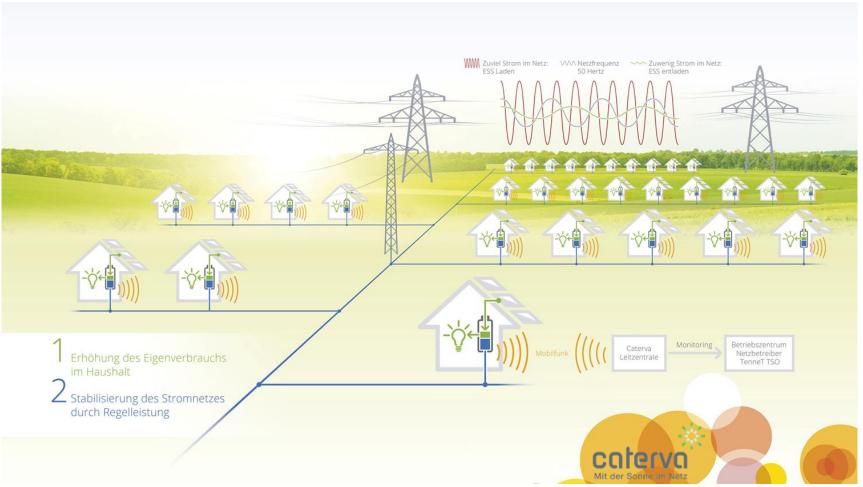
14. Symposium Energieinnovation 2016, 11.02.2016, Graz

<u>David Steber</u>, Peter Bazan, Reinhard German



- Motivation
- SWARM Forschungsprojekt
- Regulatorien Primärregelleistung
- SWARM Simulationsmodell
- Ergebnisse
- Zusammenfassung

Motivation


- Konventionelle Kraftwerke werden zukünftig nicht mehr in der Lage sein, ihren heutigen Beitrag zur Systemstabilität zu leisten¹
- > Bedarf alternativer und nachhaltiger Lösungen

- Motivation
- SWARM Forschungsprojekt
- Regulatorien Primärregelleistung
- SWARM Simulationsmodell
- Ergebnisse
- Zusammenfassung

SWARM Forschungsprojekt

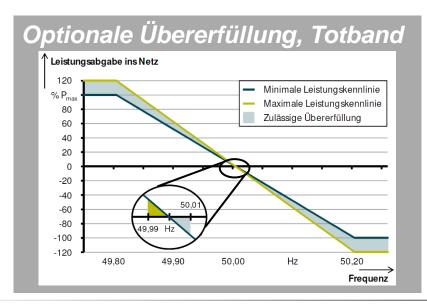
➤ Virtueller Großspeicher SWARM wurde im Sommer 2015 erstmals für den deutschen Primärregelleistungsmarkt präqualifiziert

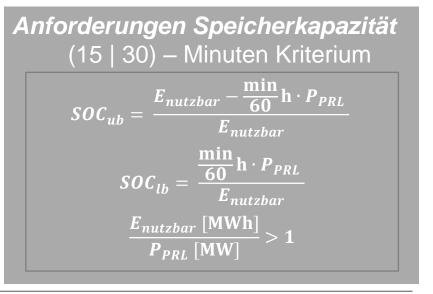
SWARM Forschungsprojekt

 Kooperationsprojekt der Caterva GmbH (München) und der N-ERGIE AG (Nürnberg)

gefördert durch die

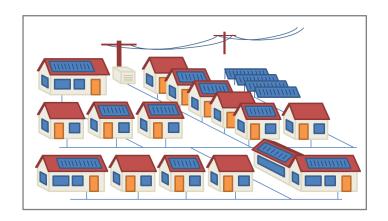
- Forschungsbegleitung durch FAU
 - Untersuchung des ökonomischen Nutzens der Installation eines Energiespeichersystems
 - Einflüsse der Installation der Energiespeichersysteme auf das lokale Veteilnetz
 - Vergleich und Abgrenzung von konventionell und mittels SWARM bereitgestellter PRL
 - Untersuchung des Nutzerverhaltens und deren Motivation

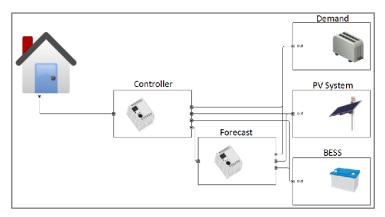



- Motivation
- SWARM Forschungsprojekt
- Regulatorien Primärregelleistung
- SWARM Simulationsmodell
- Ergebnisse
- Zusammenfassung

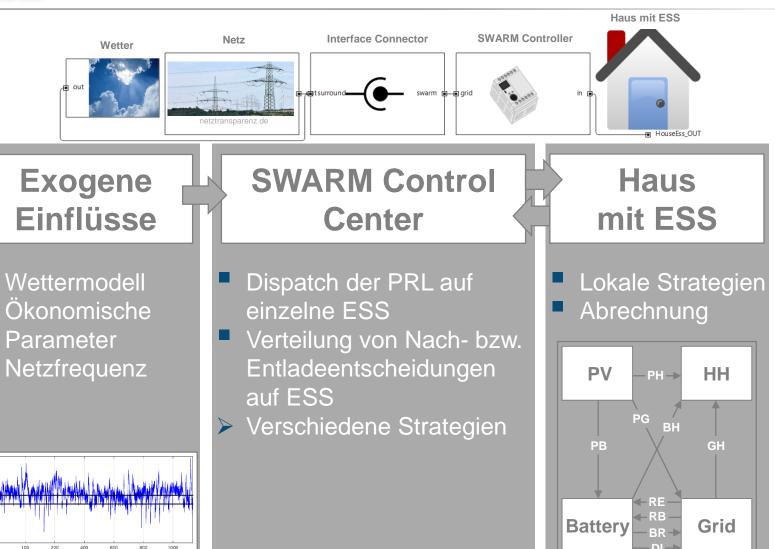
Regulatorien Primärregelleistung

- Transmission Code
- Veröffentlichungen der deutschen ÜNBs
 - Freiheitsgrade bei der Erbringung von Primärregelleistung
 - Anforderungen an die Speicherkapazität bei Batterien für die Primärregelleistung
- > Auswirkungen auf die Wirtschaftlichkeit?

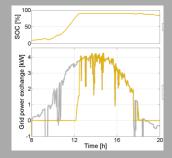


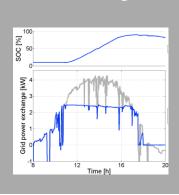

- Motivation
- SWARM Forschungsprojekt
- Regulatorien Primärregelleistung
- SWARM Simulationsmodell
- Ergebnisse
- Zusammenfassung

i7-AnyEnergy Simulationsframework


- Komponentenbasiertes, flexibles hybrides
 Simulationsframework basierend auf AnyLogic
 - Kontiuierliche Fluss-Simulation (z.B. Leistung, Material, Geld)
 - Diskrete Simulation (z.B. Kontrollentscheidungen)
 - Hierarchisches Interface und Filter Konzept für den effizienten Austausch von Parametern, Steuerentscheidungen und Nachrichten im Simulationsmodell
- Ermöglicht Rapid-Prototyping für Häuser, Siedlungen...

SWARM Simulations modell

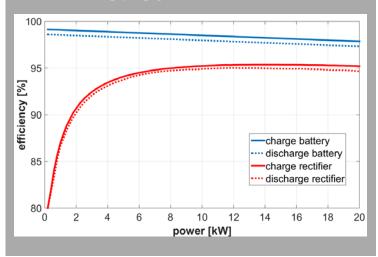



Lokale Strategien SWARM Simulationsmodell

Ladestrategien Haushalt

Schnellladen (greedy)

- Speicher läuft schnell voll
- Steile Gradienten
- Vorhersagebasiert

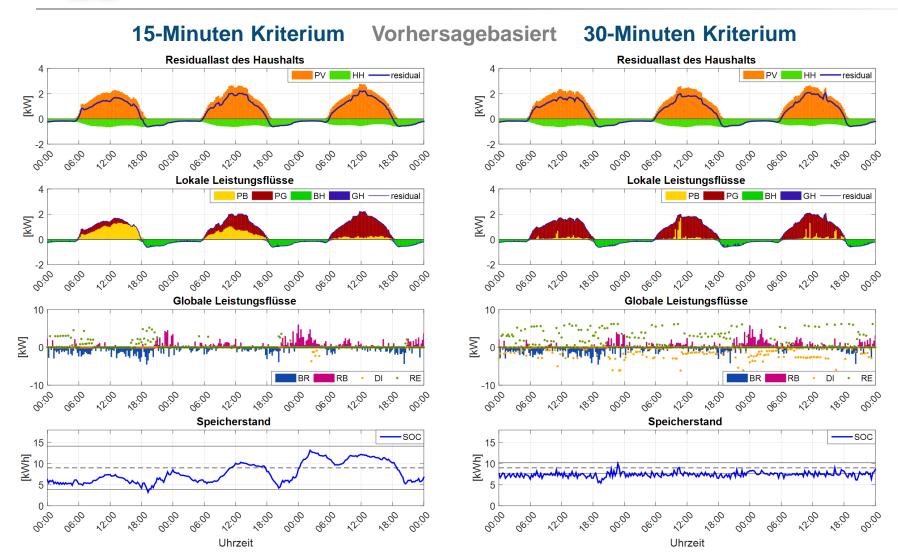


Speichert
PV-Energie
nur anteilig
Schonend

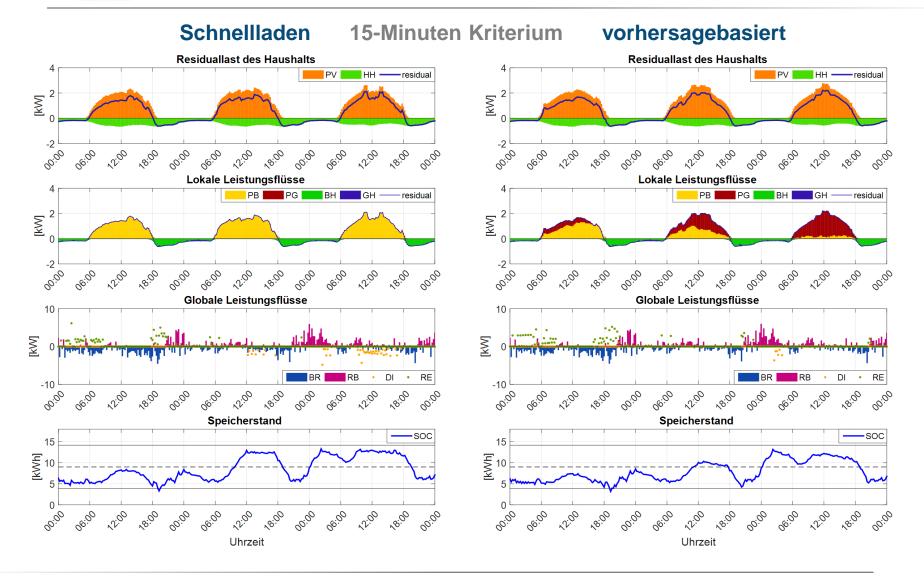
Moshoevel et al. "Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption," Applied Energy, Vol. 137, No. 1, p. 567–575, 2015

Energiespeichersystem

- Leistungsabhängige
 Wirkungsgradverluste in
 Batterie und Wechselrichter
- Eigenverbrauch von 400 W im Betrieb


SMA Solar Technology AG, "Kompaktspeicher: Placebo oder Zukunftslösung? Ergebnisse aus einem Jahr Felderfahrung," 22 04 2015. [Online]. Available: http://www.sma-sunny.com/wp-content/uploads/2015/04/Abb5_Leistungsabh%C3%A4ngige-Wirkungsgrade-Labormessungen.jpg. [Zugriff am 15 01 2016].

- Motivation
- SWARM Forschungsprojekt
- Regulatorien Primärregelleistung
- SWARM Simulationsmodell
- Ergebnisse
- Zusammenfassung



Leistungsflüsse Haushalt SWARM Simulationsmodell

Leistungsflüsse Haushalt SWARM Simulationsmodell

Haushalt **SWARM Simulationsergebnisse**

Globale Steuerung von Lade- bzw. Entladeoperationen und globale Ausnutzung von Freiheitsgraden	Ohne ESS	15-Minuten Kriterium		30-Minuten Kriterium	
		Schnell- laden	Vorhersa- gebasiert	Schnell- laden	Vorhersa- gebasiert
Eigenverbrauchsrate	29,9 %	58,7 %	58,8 %	51,4 %	50,2 %
Autarkiegrad	49,5 %	97,2 %	97,2 %	84,9 %	83,9 %
finanzielles Ergebnis p.a.	-184 €	263€	263€	147€	139 €
Interner Zinsfuß	-/-	7,8 %	7,8 %	4,6 %	4,3 %

Globale Steuerung von Lade- bzw. Entladeoperationen und lokale Ausnutzung von Freiheitsgraden	Ohne ESS	15-Minuten Kriterium		30-Minuten Kriterium	
		Schnell- laden	Vorhersa- gebasiert	Schnell- laden	Vorhersa- gebasiert
Eigenverbrauchsrate	29,2 %	56,6 %	56,9 %	55,5 %	55,6 %
Autarkiegrad	49,0 %	95,0 %	95,5 %	93,2 %	93,5 %
finanzielles Ergebnis p.a.	-176 €	256 €	258€	230€	242€
Interner Zinsfuß	-/-	7,4 %	7,5 %	7,0 %	7,0 %

- Motivation
- SWARM Forschungsprojekt
- Regulatorien Primärregelleistung
- SWARM Simulationsmodell
- Ergebnisse
- Zusammenfassung

Zusammenfassung

- Komponentenbasiertes, flexibles hybrides
 Simulationsmodell eines real installierten virtuellen
 Großspeichers zu Erbringung von PRL
 - Abstrakte Nachbildung von zentralen (globalen) und dezentralen (lokalen) Steueralgorithmen
- Einfluss regulatorischer Vorgaben analysiert
 - Eine rein globale Steuerung der Erbringung von
 Primärregelleistung bringt erhebliche Nachteile für den Haushalt
 - Lokale Ausnutzung der Freiheitsgrade bei der Erbringung von Primärregelleistung gewährleistet die Wirtschaftlichkeit der Installation eines Energiespeichersystems im Haushalt
- Ausblick
 - Hinterlegung von Realdaten (HH+PV) im Simulationsmodell
 - Parametrierung des Modells anhand realer Messdaten

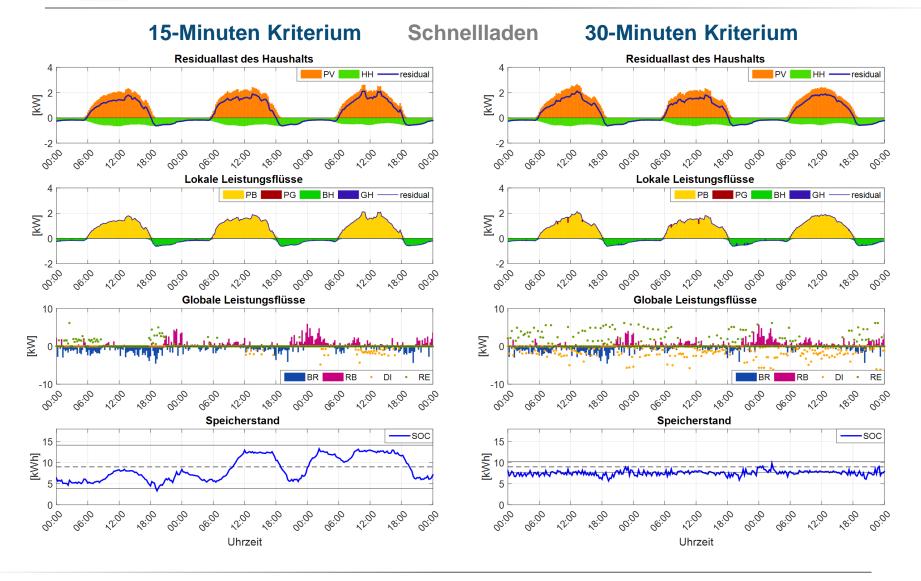
Herzlichen Dank für Ihre Aufmerksamkeit Fragen?

David Steber

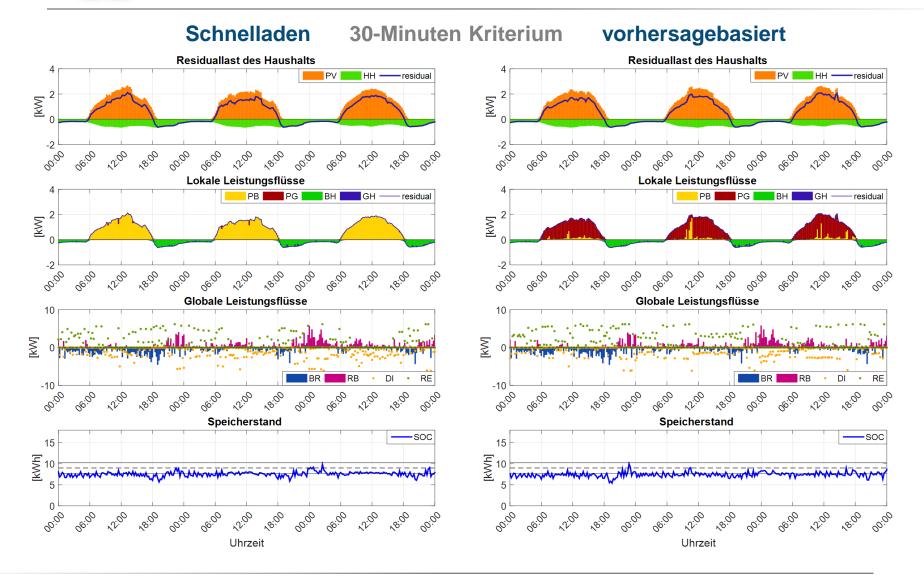
research assistant & graduate student

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Computer Science 7 – Computer Networks and Communication Systems

Martensstr. 3 | 91058 Erlangen, Germany


Tel: +49 (0) 9131 85-27907 | Fax: +49 (0) 9131 85-27409

Mail: david.steber@fau.de



Leistungsflüsse Haushalt SWARM Simulationsmodell

Leistungsflüsse Haushalt SWARM Simulationsmodell

