

Power Sector Demand: ca. 2.1 TWh Peak load: 438 MW (July 2015) Total current generation capacity: 490 MW 200 MW (220 kV) HVAC interconnector to Sicily 215 MW CCGT plant under construction (LNG)

14. Symposium Energieinnovation, Graz/Austria, Feb 2016

Weissenbacher, Micallef

	Network Level	Nominal Voltage (3-φ)	Steady- state	Voltage Range					
	LV	400V	± 10%	360V – 440V (3-φ) 208V – 254V (1-φ)					
I	MV	11kV	± 5%	10.45kV – 11.55kV (3-φ)					
I	MV	33kV	+ 5% , -10%	29.70kV – 34.65kV (3-φ)					
I	HV	132kV	± 6%	124.08kV – 139.92kV (3-φ)					
 I32kV HV circuit (tunnels) from Delimara to distribution centers (Marsa, Mosta, Kappara): I32kV to 33kV or 11kV Continues to Maghtab Terminal Station, where the interconnector arrives (220kV to 132kV) 									
 33kV circuit connects to 18 distribution centres: 33kV to 11kV (OLTC, SCADA) 									
 IIkV circuit connects to 1,200 sub-stations: IIkV to 400V/230V Gozo: one 33kV/IIkW center, 140 sub-stations 									
	Weissenbach	Weissenbacher, Micallef 14. Symposium Energieinnovation, Graz/Austria, Feb 20							

 % 3.48 2.40 2.18 	GWh/year 216 149
3.482.402.18	216 149
2.40 2.18	149 135
0.69	43
0.61	38
0.32	20
10.20	634
	0.69 0.61 0.52 0.32

Model

- Structured Query Language (SQL) model
 - Four substations
 - Filtering routines
 - I5-min data converted into hourly periods for each type of consumer meter
- ${\scriptstyle \blacktriangleright}\,$ combined with generic PV output profile model
- compared to substation master meter data sets

Weissenbacher, Micallef

14. Symposium Energieinnovation, Graz/Austria, Feb 2016

Model

DIgSILENT PowerFactory

- GIS data, physical network information (transformer/cable characteristics: impedance, distance, etc.)
- Two substations: monthly average hour records (consumer and PV profiles from the SQL model)
- One substation: additional model exclusively with original data
- Entire Gozitan 11kV network with all substations (loads based on connected type and number of consumers)
- Load flow studies

Weissenbacher, Micallef

Results/Conclusions

- SQL model : close correlation between the sum of individual meters and the associated substation master meters. Instances of reverse power flow during the period April to June around 11:00 to 15:00 at the current PV penetration level for all four modeled substations.
- DlgSilent: Results with actual data and SQL profiles very similar
- "No PV", "Current": all feeders within ±10% voltage range

14. Symposium Energieinnovation, Graz/Austria, Feb 2016

"+1kWp": phase balancing sufficient

Weissenbacher, Micallef

Results/Conclusions

Weissenbacher, Micallef

- "+2kWp": transformers had to be replaced to allow for greater tapping flexibility
- One sub-station: OLTC 11kV:400V 9-step tap change transformer was required since two tap changes had to happen during the same day to keep all feeders within limits.
- Other sub-station: switching inverters to reactive power Q(V) control, or else new manual tap changing transformer (from 11kV:433V to 11kV:400V)
- (Solutions with energy storage are not included in this presentation.)

14. Symposium Energieinnovation, Graz/Austria, Feb 2016

Scenario	No PV	Current	+1kW	+2kW
Substation 11kV/433V transf. rating (kVA)	500	500	500	500
Energy consumption, metered (kWh/year)	106,219	106,219	106,219	106,219
Peak load, evening (kW) ¹	41	41	41	41
Peak load, daytime: 11:00-15:00 (kW) ²	25	25	25	25
Total PV capacity (kWp)	-	26.72	44.72	62.72
Total PV output (kWh/year) ³	-	41,812	70,771	101,286
Penetration based on (evening) peak load ¹	-	65%	108%	152%
Penetration based on (daytime) peak load ²	-	107%	179%	251%
Maximum Instantaneous Penetration ⁴	-	304%	518%	737%
Penetration based on System Capacity ⁵	-	5.3%	8.9%	12.5%
Penetration based on Energy	-	39%	67%	95%
Penetration based on self-consumed Energy	-	31%	36%	40%
Losses, absolute (kWh/year)	1063	982	1258	2040
Losses, relative (percent)	1.00%	0.92%	1.18%	1.92%

