

Energy Storage Beyond Arbitrage: Harnessing the Excess Energy of Wind Power Plants

Fabian Moisl

moisl@eeg.tuwien.ac.at

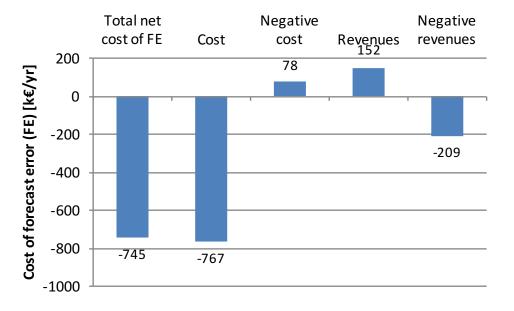
Fabian Moisl 1

Projekt LEAFS

- LEAFS: Integration of Loads and Electric Storage Systems into advanced Flexibility Schemes for LV Networks
- Laufzeit: November 2015 Oktober 2018
- Rahmen: 1. Ausschreibung Energieforschung (FFG)
- Geldgeber: Klima- und Energiefonds
- 3 Modellregionen:
 - Eberstalzell (Netz Oberösterreich)
 - Köstendorf (Salzburg Netz)
 - Heimschuh (Energienetze Steiermark)
- Projektpartner:

Motivation

- Untersuchte Betriebsstrategien für Batteriespeicher (BESS) in Verbindung mit Windparks (WP)
 - Reduktion der Prognosefehler des WP
 - Bereitstellung von Sekundärregelleistung (negativ)
 - Überschusserzeugung des WP zeitlich verschieben
 - Multimodaler Speichereinsatz
- Dazu: zweistufiges lineares Optimierungsmodell
- Kosten-Nutzen Analyse (Barwertmethode)

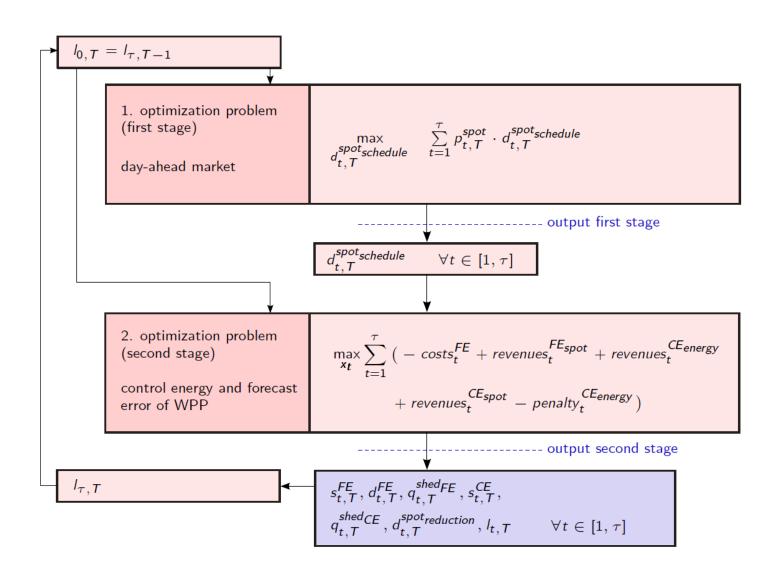


Motivation

Zusammensetzung der Kosten für Prognosefehler (FE)

$$total_net_cost^{FE} = \sum_{t} p_{t}^{balance} \cdot FE_{t}$$

Windpark mit 20 MW installierter Leistung



 $p_t^{balance}$ Ausgleichsenergiepreis [€/MWh] FE_t Prognosefehler des Windparks [MWh]

Methode – Lineares Optimierungsmodell

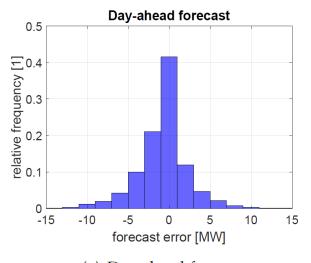
Methode – Modellparameter

Table 1: Operational and economic parameters of lithium-ion battery system

Symbol	Parameter	Unit	Reference Case / [Range]
χ^{BESS} $\chi^{BESS}/\kappa^{BESS}$	storage capacity of BESS	MWh	1
	Hours of energy storage at rated	h	1
$\eta_{in}^{BESS} \\ \eta_{out}^{BESS} \\ cycles_{total}^{BESS}$	power capacity storage charging efficiency storage discharging efficiency Life cycles of BESS	1 1 1	$\begin{array}{c} 0.9 \\ 0.9 \\ 7000 \ / \ [1000 \ - \ 10 \ 000]^{\rm a} \end{array}$
TPC^{BESS}	Total plant cost of BESS	k€/MWh	$1100 / [1046 - 1603]^{b}$
$OPEX^{BESS}$	Operational expenditures of BESS	k€/MW-yr	5 / [4.7 - 6.9] ^b

Table 1: Further parameters of wind-storage system assessment.

Symbol	Parameter	Unit	Reference Case / [Range]
-	Installed capacity of WPP	MW	20
P^{CE}	Control reserve power tendered	MW	1
	by the wind-storage system		
V^{CE}	Penalty factor for violation of	1	3
v^{CE}	Fixed rate for collateralization	%	30
	CE request		
au	Number of quarter hours per	1	96 / [24 - 96]
	time period T		
i	Interest rate	%	10



^aChen et al., 2009 ^bAkhil et al., 2013

Ergebnisse – Windpark

Table 1: Assessment of 20 MW wind power plant.

Scheduled yearly	Actual yearly	Full-load	Revenues	Total cost of	Total cost of
generation	generation	hours	day-ahead	forecast errors	forecost errors
				(day-ahead forecast)	(intraday forecast)
[GWh]	[GWh]	[h/yr]	[k€/yr]	[k€/yr]	[k€/yr]
50.6	43.8	2188	1615	-745	-515

Intra-day forecast

0.5

[1] 0.4

Output

0.3

0.1

0.5

0.5

10

15

forecast error [MW]

(a) Day-ahead forecast

(b) Intraday forecast

Figure 2.1: Histograms of forecast errors (interval wigth: 2MW).

Ergebnisse – Arbitrage-only

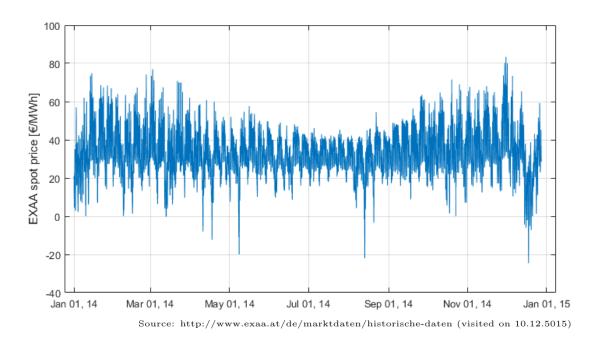
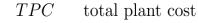



Table 1: Net present value (NPV) of battery energy storage system (BESS) when employed in arbitrage-only operational mode ($\chi^{BESS} = 1MWh$)

Total net revenues of BESS employment	Exp. lifetime of BESS ^a	PV of revenues	$ \begin{array}{c} \text{PV of} \\ OPEX^{BESS} \end{array} $	$PV ext{ of } TPC^{BESS}$	NPV of BESS
[k€/yr]	[years]	[k€]	[k€]	[k€]	[k€]
8.7	11.6	58.2	-33.5	-1100	-1075

^aResulting from 603 full-cycle equivalents per year

Ergebnisse – Minimiere Prognosefehler

Table 1: WPP forecast error cost in 2014 under variable storage capacity χ^{BESS} ($\chi^{BESS}/\kappa^{BESS}=1h$).

		FE < 0 lack of energy		FE surplus o	
χ^{BESS}	Total net cost of FE	Cost	Negative cost	Revenues	Negative revenues
[MWh]	[k€]	[k€]	[k€]	[k€]	[k€]
0 1	-744.8 -732.5	-766.6 -737.7	78.2 71.7	152.3 125.9	-208.7 -192.4
difference	12.3	28.7	-6.5	-26.3	16.4

Table 1: Net present value of BESS when employed in minimum forecast error operational mode ($\chi^{BESS} = 1MWh$, forecast quality: day-ahead).

Total net revenues	Exp. lifetime	PV of	PV of	PV of	NPV of
of BESS employment	of BESS ^a	revenues	$OPEX^{BESS}$	TPC^{BESS}	BESS
[k€/yr]	[years]	[k€]	[k€]	[k€]	[k€]
12.3	10.3	77.0	-31.3	-1100	-1054

^aResulting from 679.3 full-cycle equivalents

TPC total plant cost

Ergebnisse – Multimodaler Speichereinsatz

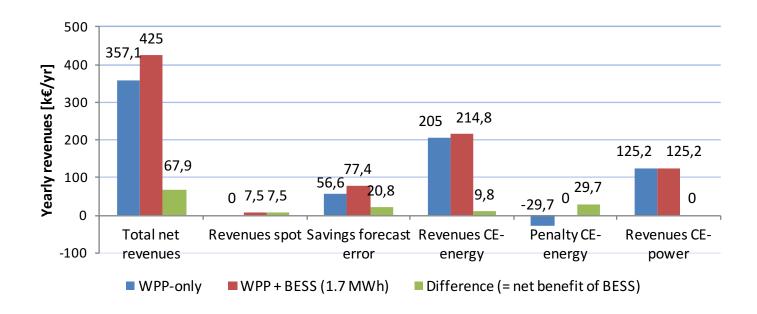
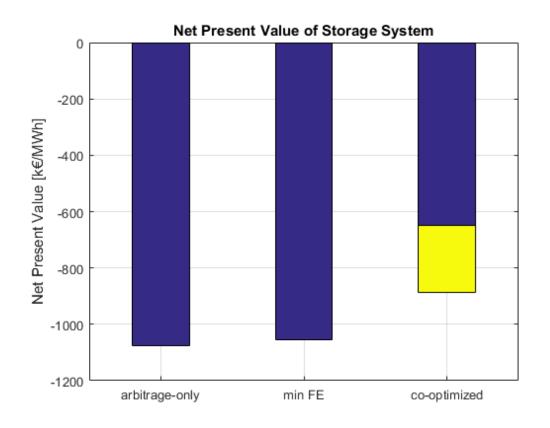


Table 1: Present value of net revenues due to co-optimized employment of the storage system ($\chi^{BESS} = 1.7MWh$, $P^{CE} = 1MW$).

Collateralization of control energy	Total net revenues of BESS employment [k€/yr]	Expected lifetime of BESS ^a [years]	PV of revenues [k€]	$\begin{array}{c} \text{PV of} \\ OPEX^{BESS} \\ [\mathbf{k} \in] \end{array}$	$PV \text{ of } \\ TPC^{BESS} \\ [k \in]$	NPV of BESS [k€]
Penalty factor Fixed rate	67.9 137.2	9.1 9.1	$393.1 \\ 794.1$	-28.9 -28.9	-1870 -1870	-1506 -1104

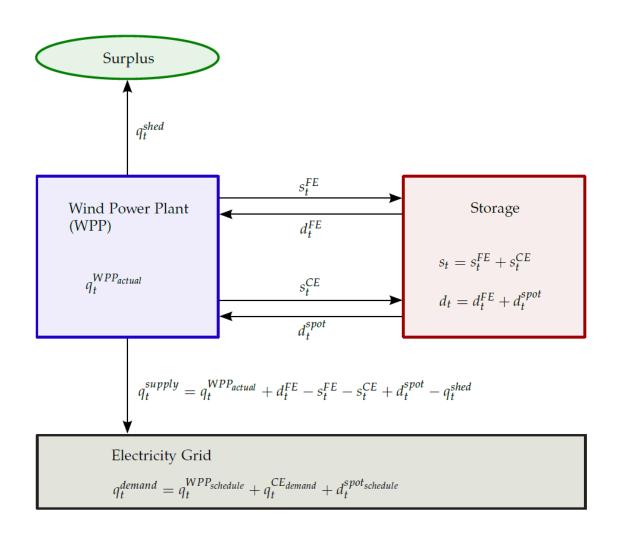

^aResulting from 762.5 full-cycle equivalents per year.

Ergebnisse – Vergleich der Betriebsstrategien

Schlussfolgerungen und Ausblick

- Keine der betrachteten Einsatzstrategien für Batteriespeicher rechtfertigt die Investitionskosten (Barwerte immer negativ)
- Speicherkosten müssten um 60-80% sinken, damit Barwert im multimodalen Betrieb positiv wird
- Durch Abregelung von Windturbinen bei positivem Prognosefehler könnten
 Ausgleichsenergiekosen in der Höhe von einigen zehntausend Euro eingespart werden
- Ausblick: Erlöse können weiter gesteigert werden, wenn Speicher für positive und negative Regelleistungsbereitstellung verwendet werden

Literaturverzeichnis


- Akhil, Abbas A. et al. (2013). DOE/EPRI 2013 electricity storage handbook in collaboration with NRECA. Sandia National Laboratories Albuquerque, NM, USA. url:
 http://www.emnrd.state.nm.us/ECMD/RenewableEnergy/documents/SNL-ElectricityStorageHandbook2013.pdf (visited on 12/10/2015)
- Chen, Haisheng et al. (2009). "Progress in electrical energy storage system: A critical review." In: Progress in Natural Science 19.3, pp. 291–312. issn: 10020071. doi: 10.1016/j.pnsc.2008.07.014. url: http://linkinghub.elsevier.com/retrieve/pii/S100200710800381X (visited on 12/09/2015)

Anhang - Methode

Anhang - Methode – 1. Stufe des Opt.modells

Maximiere Erlöse am day-ahead Markt

$$\max_{d_{t,T}^{spot_{schedule}}} \sum_{t=1}^{\tau} p_{t,T}^{spot} \cdot d_{t,T}^{spot_{schedule}} \tag{1}$$

s.t.
$$d_{t,T}^{spot_{schedule}} \ge 0 \qquad \forall t \in [1, \tau] \qquad (2)$$

$$d_{t,T}^{spot_{schedule}} \le \kappa^{BESS} \cdot 1/4 \qquad \forall t \in [1, \tau]$$
 (3)

$$l_{t,T} \ge 0 \qquad \forall t \in [1, \tau] \qquad (4)$$

$$l_{0,T} = l_{\tau,T-1} \tag{5}$$

$$l_{t-1,T} - \left(d_{t,T}^{spot_{schedule}}/\eta_{out}^{BESS}\right) = l_{t,T}$$
(6)

 $p_{t,T}^{spot}$ day-ahead strompreis [\in /MWh]

 $d_{t,T}^{spot_{schedule}}$ geplanter day-ahead Speichereinsatz (discharge) [MWh]

 κ^{BESS} Leistung des Speichers [MW]

 $l_{t,T}$ Speicherfuellstand [MWh]

Anhang - Methode – 2. Stufe des Opt.modells

Maximiere die erwarteten Gesamterlöse

$$\max_{\boldsymbol{x}_{t}} \sum_{t=1}^{\tau} \left(-p^{balance} (|FE_{t}| - d_{t}^{FE} - s_{t}^{FE} - q_{t}^{shed_{FE}}) + p^{spot} \cdot s_{t}^{FE} \cdot \eta^{BESS} \right. \\
+ p_{t}^{CE_{MWh}} (s_{t}^{CE} + q_{t}^{shed_{CE}} + d_{t}^{spot_{reduction}}) \\
+ s_{t}^{CE} \cdot \eta^{BESS} \cdot p^{spot} + d_{t}^{spot_{reduction}} \cdot p^{spot} \\
- V^{CE} \cdot p_{t}^{CE_{MWh}} [\Theta_{t}^{CE} \cdot P^{CE} \frac{1}{4} - (s_{t}^{CE} + q_{t}^{shed_{CE}} + d_{t}^{spot_{reduction}})] \right)$$

$$\boldsymbol{x_t} = [d_t^{FE}, s_t^{FE}, q_t^{shed_{FE}}, s_t^{CE}, d_t^{spot_{reduction}}, q_t^{shed_{CE}}].$$

 s_t store energy [MWh]

 d_t discharge energy [MWh]

FE Prognosefehler (forecast error)

CE Regelenergie (control energy)

Anhang - Methode – Erlöse

Erlöse aus Leistungspreis für Regelenergie:

$$revenues^{CE_{power}} = p^{CE_{MW}} \cdot P^{CE} \cdot 8760h$$

WP muss Regelenergie liefern, wenn Regelenergiebedarf $> q_{threshold}$ (Abrufwahrscheinlichkeit 10%)

$$\Theta_t^{CE} = \begin{cases} 1 & \text{if } q_t^{CE} > q_{threshold}^{CE} \\ 0 & \text{otherwise} \end{cases}$$

Table 1: Historical market data of the year 2014

		<u> </u>	
Symbol	Parameter	Unit	Value
p_{CE}^{spot}	average spot market price	€/MWh	32.80
$p^{CE_{MW}}$	average price for control power	€/MW·h	14.29
$p^{balance}$	average cost of balancing energy	€/MWh	39.59
$q_{threshold}^{CE}$	threshold for negative aFRR	MWh	36.68

