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Abstract: We describe a tool for the simulation and optimization of a EU-wide multi-echelon 

logistics network. In particular we evaluate the feasibility and profitability of a de-centralized 

approach to biofuel production from residual biomass on an EU-wide level. The overall 

objective of the FP7 project BioBoost1 was “[…] to pave the way for de-central conversion of 

residual biomass to optimised, high energy density carriers, which can be utilised in large 

scale applications for the synthesis of transportation fuel and chemicals or directly in small-

scale combined heat and power (CHP) plants”. One of the sub-goals was the development of 

a software tool for the simulation of different scenarios of utilization and for the optimization 

of logistics. The resulting software has been used to calculate optimized scenarios that can 

be explored online via the BioBoost Navigator2 and is now available as open-source software 

for application to similar optimization problems. 
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1 Modeling 

An essential part of solving large problems such as international multi-modal multi-echelon 

logistic networks is carefully choosing a suitable level of abstraction and corresponding 

sources of information. In the case of BioBoost, the task was to collect residues or waste 

materials economically by using several aggregation and transformation steps. In a general, 

very simple formulation the problem could be modeled as a set of locations where source 

material i.e. feedstock can be obtained, is then transported to intermediate processing plants 

and further transported to its final destination where it is upgraded to a consumer product. 

This is shown in Figure 1, where first, feedstock is collected e.g. straw from the fields to a 

local depot, where it is further transported to de-central conversion facilities, where the 

energy density is increased, mostly by reducing oxygen content. Then, the resulting energy 

carrier is transported to the central facilities where it is converted to its final form, e.g. 

transport fuel or heat and power. 

                                                
1 http://bioboost.eu This work is based on results of the BioBoost project and contributions 

from all consortium members. BioBoost ran from 1-2012 to 6-2015 and was funded under 

contract 282873 within the Seventh Framework Programme by the European Commission. 

2 http://iung.neogis.pl/navigator/  
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Figure 1 Logistic Chain 

Beside this simple logistic chain, several additional effects have to be considered. First, 

obtaining different amounts of feedstock probably has a non-linear effect on the price, i.e. 

buying all available source material from on source location will probably drive prices up. On 

the other side, a high demand favours cost-efficient equipment and procurement processes 

which might reduce handling and transport costs. Moreover, when logistic networks that span 

multiple countries are considered, different cost factors such as labor, fuel or investment 

costs might differ significantly between locations. Most importantly, the level of aggregation 

and hence the sizes of intermediate and final processing facilities have a large effect on the 

economy of scale, i.e. larger facilities are much more cost effective. On the other hand, larger 

facilities probably require longer and, hence, more expensive delivery of source material. 

In the BioBoost Project the following factors have been considered: 

• feedstock/source locations 

• intermediate conversion locations 

• final conversion locations 

• transport distances between all locations 

• transport means and modes (chosen per 

single transport) 

– costs for transport and handling 

per ton and per kilometer 

• storage costs for different feedstock and 

storage types 

• feedstock potentials for all source 

locations 

• cost scaling factors per region for 

– investment 

– fuel 

– labor 

• economies of scale for different 

conversion technologies and different 

plant sizes 

• estimated regional feedstock price based 

on 

– current market volume and 

regionally established price 

– potential market volume 

– expected price increase 

according to expected demand 

 

In summary many different factors have to be considered, each with many different 

possibilities and these must be counterbalanced against each other to arrive at a viable and 

cost effective solution. 
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1.1 Model Simplifications 

In order to estimate the viability of many different scenarios, it the calculation had to be 

simplified without sacrificing accuracy. This was achieved with the elimination of several 

parameters and reduction of number of parameter choices so that effectively fewer scenarios 

are possible. This was done in a way, that only inferior scenarios where ruled out. Moreover, 

the calculation of these scenarios has been aggregated to a reasonable granularity to allow 

very fast calculation on a computer. 

1.1.1 Regional Aggregation 

To limit the number of locations in a meaningful way, the smallest territorial unit that is 

standardized throughout the European Union was used as a references. The EU-

Nomenclature of Units for Territorial Statistics [NUTS] has several granularity levels of which 

NUTS-3 is the finest, examples are the Austrian Bezirke, German Landkreis, French 

Département, Italian Province. The large difference in the size of the NUTS 3 regions led to a 

distorted distance matrix as intra-regional transport was in some cases several times longer 

than inter-regional transport, which impacted the optimisation. Accordingly, the geographical 

size was limited to a maximum of 7500 km² by dividing large regions, giving about 2000 

regions in the European Union.  

1.1.2 Temporal Aggregation 

To further reduce computational complexity all estimates are based on yearly averages. 

Beginning from the estimated yields of feedstock in every region, over transport and storage 

cost for yearly amounts up to construction and operation costs of conversion facilities based 

on yearly depreciation and yearly average costs. 

1.1.3 Implicit Parameter Selection 

Finally, several parameters can be implicitly selected, based on the choices already made for 

other parameters. Most importantly, the sizes of all facilities have been eliminated from the 

list of free variables by automatically determining appropriate sizes. This was made possible 

by the incremental evaluation of each scenario. Effectively, only the amount of feedstock as 

ratio of available feedstock per region has to be selected, together with the target region for 

each source region for every type of transport, i.e. once for feedstock and once for 

intermediate product. The accumulated amounts in a region thereby determine the size of 

the facility. For example, if region A yields 10kt/a and region B yields 20 kt/a and all 

feedstock is bought and transported to region C, a total of 10+20 = 30 kt/a will be in region C 

for further processing. Taking into account a certain downtime for maintenance a plant with a 

yearly turnover of a little bit more than 30 kt/a is built. 
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1.2 Formalization 

The following formulates and succinctly summarizes all calculations performed in 
implementation of the model.

Quantities at source 

Q𝑝,𝑟
s = P𝑝,𝑟

f  ∙ 𝒖(𝒑, 𝒓) 

Feedstock Acquisition Cost 

C𝑝,𝑟
f = P(𝑝, 𝑟) ∙ Q𝑝,𝑟

s  

Transport Cost 

C𝑝,𝑟
t = Q𝑝,𝑟

s ∙ D𝑟,𝒕(𝒑,𝒓) ∙
P𝑝,𝑟

t + P𝑝,𝒕(𝒑,𝒓)
t

2
 

Handling Cost 

C𝑝,𝑟
h = Q𝑝,𝑠

s ⋅ (P𝑝,𝑟
h + P𝑝,𝒕(𝒑,𝒓)

h ) 

Quantities at Target 

Q𝑝,𝑟
t = ∑ Q𝑝,src

s ⋅ 𝛿𝒕(𝒑,𝐬𝐫𝐜),𝑟

src ∈ NUTS

 

Optimized Plant Capacities 

CP𝑝,𝑟
c =

Q𝑝,𝑟
t

P𝑝
uf

 

Variable Conversion Cost 
C𝑝,𝑟

v = Q𝑝,𝑟
t ⋅ P𝑝,𝑟

cv  

Scaled Plant Maintenance Cost 

C𝑝,𝑟
m = (

CP𝑝,𝑟
c

P𝑝
ds

)

𝜎𝑚𝑐

⋅ P𝑝,𝑟
mc 

 

Scaled Plant Construction Cost 

C𝑝,𝑟
c = (

CP𝑝,𝑟
c

P𝑝
ds

)

𝜎𝑐𝑐

⋅ P𝑝,𝑟
cc  

Financing Cost   C𝑝,𝑟
i = 𝜆 ⋅ C𝑝,𝑟

c  

Storage Capacity   CP𝑝,𝑟
s = CP𝑝,𝑟

c ⋅
P𝑝

ss

365
 

Storage Cost   C𝑝,𝑟
s = CP𝑝,𝑟

s ⋅ P𝑝
sc 

Produced Quantities at Source (for next 
logistics echelon) 

Q𝑝′,𝑟
s = Q𝑝,𝑟

t ⋅ γ𝑝,𝑝′
cy

 

Revenue R𝑝,𝑟 = Q𝑝,𝑟
s ⋅ 𝑆𝑝

s + Q𝑝,𝑟
t ⋅ 𝑆𝑝

t  

 

 

Total Cost 

C = ∑   ∑ C𝑝,𝑟
f + C𝑝,𝑟

t + C𝑝,𝑟
h + C𝑝,𝑟

v + C𝑝,𝑟
m + C𝑝,𝑟

c + C𝑝,𝑟
i + C𝑝,𝑟

s − R𝑝,𝑟

𝑟 ∈ NUTS𝑝 ∈ Products

 

Purchase Price 

P(𝑝, 𝑟) = P𝑝
b ⋅ (

exp (𝜎𝑝
p

) − P𝑝
max

exp(𝜎𝑝
p

) − 1
+

exp (𝜎𝑝
p

⋅ 𝒖(𝒑, 𝒓)) ⋅ (P𝑝
max − 1)

exp(𝜎𝑝
p

) − 1
) 

 

 Index Variables Unit 

𝑝 product [product] 

𝑟 region [region] 

 Facts  

NUTS set of regions [{region}] 

Products set of products [{product}] 

𝑆𝑝
s, 𝑆𝑝

t  product 𝑝’s sales price (at source s or 

at target t) 

[€] 

Dsrc,dst distance matrix (route lengths) [km] 

P𝑝,𝑟
f  feedstock potentials for product 𝑝 and 

region 𝑟 

[t/a] 

P𝑝,𝑟
cv  regional product conversion cost (per 

ton of feedstock) 

[€/t] 

P𝑝,𝑟
mc regional plant maintenance cost (for 

the whole plant per year) 

[€/a] 

P𝑝,𝑟
cc  regional plant construction cost (for the 

whole plant per year) 

[€/a] 

P𝑝,𝑟
sc  regional product/plant storage cost [€/t/a] 

P𝑝
ds plant design size [t/a] 

P𝑝
uf plant design utilization factor [1] 
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P𝑝
ss product/plant safety stock duration [days/a] 

P𝑝,𝑟
t  regional product transport costs [€/t/km] 

P𝑝,𝑟
h  regional product handling costs [€/t] 

γ𝑝,𝑝′
cy

 conversion yield factor / mass rate for 

conversion of product 𝑝 into 𝑝′ 

[t/t] 

𝜎𝑐𝑐 size-dependent construction cost 

scaling factor 

[1] 

𝜎𝑚𝑐 size-dependent maintenance cost 

scaling factor 

[1] 

𝜆 interest rate [%/a] 

 Variables (optimization targets)  

𝒖(𝒑, 𝒓) feedstock utilizations [1/a] 

𝒕(𝒑, 𝒓) product transport targets [region] 

 Intermediate Results  

Q𝑝,𝑟
s , 

Q𝑝,𝑟
t  

quantities or amounts at source and at 

target, respectively 

[t/a] 

CP𝑝,𝑟
c  converter capacities [t/a] 

CP𝑝,𝑟
s  storage capacities [t/a] 

C𝑝,𝑟
c  construction cost [€/a] 

C𝑝,𝑟
f  feedstock purchase cost [€/a] 

C𝑝,𝑟
i  investment cost [€/a] 

C𝑝,𝑟
m  maintenance cost [€/a] 

C𝑝,𝑟
s  storage cost [€/a] 

C𝑝,𝑟
t  transportation cost [€/a] 

C𝑝,𝑟
h  handling cost [€/a] 

C𝑝,𝑟
v  variable conversion cost [€/a] 

P(𝑝, 𝑟) purchase price [€] 

P𝑝
b base price per ton of product [€/t] 

P𝑝
max maximum price multiplier (for 100% 

market saturation) 

[1] 

𝜎𝑝
p
 price curve scaling factor [1] 

R𝑝,𝑟 revenue [€/a] 

 Result  

C total cost [€/a] 

 

1.3 Support data 

Three conversion pathways are included in the optimisation model. The Karlsruhe Institute of 

Technology developed the Bioliq- or Fast Pyrolysis (FP)-process. Straw is pyrolysed at 

500°C in the absence of oxygen to char and vapours, which are rapidly cooled down and are 

mixed with the milled char to a slurry. It contains 85 % of the straw energy but has only 12% 

of its volume, enabling railway transport. Off-gases are burned to provide the pyrolysis heat. 

The drop-in transportation fuels are produced in a large, central plant with a feedstock 

demand between 1.3 and 4 million tonnes of biosyncrude, which relates to a thermal fuel 

capacity between 800 MW to 2.5 GW. The slurry of 5 to 15 FP-plants is gasified at high 

pressure and temperatures of over 1200 °C to hydrogen and carbon monoxide for fuel 

production via Methanol-to-Gasoline- or Fischer-Tropsch-synthesis with green power as co-

product. These are expected to have a GHG-avoidance potential of 81 % compared to fossil 

fuels. 

The Catalytic Pyrolysis- (CP) pathway is based on the CatOil-technology developed by 

CERTH (Center for Research and Technology Hellas), Royal DSM and Neste. Forest 

residues are dried and grinded and pyrolysed at about 500 °C in absence of oxygen in 

contact to a catalytic material. Compared to FP the catalyst splits off a higher share of the 

oxygen which is contained in the biomass molecules (about 45 % by weight) as carbon 

dioxide, carbon monoxide or water. The pyrolysis vapours are rapidly cooled. The condensed 

biooil contains 50 % of the liquid biomass energy, is low in oxygen content (15 to 20 %) and 

has a heating value of about 30 GJ/t. CFP off-gases and the catalyst coke are combusted to 

supply the reaction heat for pyrolysis and produce power. A truck load (25 t) of forest fuel 
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yields 4.5 tonnes biooil, which can be railway-transported to a refinery. The upgrading 

includes alternating steps of separation and hydrotreatment, yielding by-products acetic acid, 

phenol and light gases. Separation of the first two reduce the hydrogen consumption, the 

light gases could either be marketed as green LPG or recycled to hydrogen generation. Due 

to changes in the European refining sector it is expected that the CP biooil may replace 2 % 

of fossil crude. This enables use of existing capacity for steam methane reforming and 

hydrotreatment for the deoxygenation of the biooil. The product is co-processed with the 

fossil streams and distilled to the conventional transportation fuels gasoline/kerosene/diesel 

according to the production slate of the refinery. All fuels purely consist of hydrocarbons 

which guarantee drop-in blending. The fuels are fully engine compatible and do not require 

changes in the distribution infrastructure, two points very important for consumer acceptance. 

The fuels have a GHG-avoidance potential of 81 % compared to fossil fuels. 

The Hydrothermal Carbonisation (HTC) process was developed by AVA-CO2. Organic 

municipal waste with a typical composition of 60 to 70% water and about 15% ash is minced 

and heated with steam to about 180 to 250 °C at 10 bar. The biomass is converted to HTC 

biocoal by elimination of chemically bonded water from carbohydrates (dehydratisation). 

After several hours the pressure is released in an expansion vessel leading to a separation 

of wet biocoal and steam. The steam is used to start the exothermal reaction in the next 

reactor. During HTC all soluble salts are solved and found to a high share in aqueous 

solution after the reaction. This lowers the potassium content of HTC coal which increases 

the ash melting temperatures from about 700 °C to 1200 °C for organic waste based biocoal. 

Low K+ and Cl- content allow combustion of non-wood biomass in power plants because 

slagging and corrosion problems are avoided. The wet biocoal can be filter-pressed to a 

water content of 50 to 60 %. The HTC process has an energetic conversion efficiency of 

75 % from organic waste to biocoal. 

Biomass potential and feedstock price 

The utilization of organic waste from kitchen, garden or food production is considered 

environmentally sustainable per se. These are currently combusted at high costs (due to 60 

to 80% water content) or composted. The forest residue potential included only those 

amounts from final fellings (branches, tree-tops, bent and rotten stem wood), stand 

maintenance (thinning wood), stumps (where permitted) and wood from roadsides or land 

management, which could be extracted without compromising soil fertility or environmental 

protection aims. Forest residues are typically left in the forest to rot or a certain share is used 

as fuel for heating or power generation in some countries. Concerning straw, the soil demand 

for organic matter and straw applications in agriculture (for fodder, bedding, tulip covering) 

were deducted from the theoretical potential. This surplus straw is typically ploughed under, 

its rotting consumes nitrogen fertiliser and is in some cases adverse to soil fertility. In some 

countries a certain share is used for heat and power generation. So if the optimisation model 

sources 100% of the feedstock it is still the sustainable part of ready available residue 
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biomass. No feedstock is diverted from the production of food, feed, timber, pulp or wood 

boards.  

Feedstock costs were determined assuming use of most efficient equipment and 

procurement processes, which are not necessarily operated in all regions today but are 

required to fuel facilities with a feedstock demand in the range of tens to hundreds of 

thousand tonnes biomass. The price depends on offer and demand in a free market. For 

sourcing between 0 and 50 % of the sustainable and available feedstock a single price is 

assumed, which increases with higher utilization rates as shown in the figure below for the 

European average. Feedstock-competing sectors (wood pellets, straw building) are expected 

to profit initially from an increased demand due to establishment of more efficient 

procurement technology until prices generally increase at higher sourcing ratios as observed 

on the Swedish forest fuel market. 

 

 

Figure 2: The feedstock prices (y-axis) depend on degree of utilization (x-axis). Increasing prices were assumed, 
if more than 50% of the available residue and waste feedstock is marketed. 

Transport distance matrix 

For the determination of transport costs, the distances between feedstock source (e.g. field-

side pile) and de-central conversion plant is required. Average route lengths were 

determined on base of the European road network using Open Street Map data. If feedstock 

and conversion plant are in the same region, an average route length was estimated by 

calculating routes from 20 random points in the region to the centroid, where the conversion 

plant was assumed to be. If transport was from one region to another, route lengths between 

20 random selected points in each region were calculated and averaged. The large 

difference in the size of the NUTS 3 regions led to a distorted matrix as intra-regional 

transport was in some cases several times longer than inter-regional transport, which 

impacted the optimisation. This problem was solved by splitting large NUTS regions to sub-
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regions of maximum 7500 km². The feedstock potential was assumed to be evenly 

distributed in these cases.  

2 Methods 

Our approach for solving instances of the described problem is simulation-based 

optimization. We first created a simulation model that calculates costs and several other 

relevant metrics and has a set of free parameters that can be tuned. The number of different 

parameters of this model is very large. Therefore, it is infeasible to find optimal parameter 

settings manually. Instead, we used the simulation model as the objective function for an 

algorithm that optimizes parameters for the simulation model. Many different algorithms 

could be used for optimization including exact and inexact solvers. We rely on metaheuristics 

because we do not need to find a globally optimal solution and we prefer to find approximate 

solutions in shorter runtimes to iterate quickly. However, it would be very helpful to get 

accurate information on the best achievable quality. This would be an interesting aspect for 

future improvements of the method. In the following sections we describe our method in 

more detail. 

2.1 Simulation-Based Optimization 

Simulation-based optimization is a term that is used to refer to various different methods (cf. 

[Spall2003]). We use the term to highlight the fact that simulations are used to determine the 

quality of a given solution. In this particular problem, a solution is a scenario that describes 

the value chain including feedstock acquisition, transport and handling, as well as 

processing, and the quality refers to the overall costs of the solution. The objective is to find a 

scenario that has minimal overall costs and is potentially profitable. A simulation model is 

used to try a large number of different scenarios in an iterative loop of simulation and 

optimization. Figure 3 illustrates this approach. In the center we use an accurate simulation 

model for evaluating concrete scenarios. This simulation model uses background data such 

as distance matrices storing the length of transport routes as well regional cost scaling 

factors and costs for materials and activities. Additionally, the simulation model has several 

free variables which can be tuned (such as feedstock utilization and transport routes). 

Through simulation it is possible to calculate detailed measures and results such as plant 

sizes, transport distances, emissions and most importantly regional costs which can then be 

aggregated to overall costs (or alternatively a measure describing ROI). Since it is impossible 

to simulation all possible solutions only a part of the full search space can be explored using 

some kind of (stochastic) search algorithm. The optimization algorithm uses information 

gathered through simulation to produce new solution candidates which are again evaluated 

through simulation. The underlying assumption is that solution candidates that are similar to 

known good solution candidates also have a similar quality and might be even better. We 

hope to find improved solutions by iterating this loop many times. 
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Whether new solution candidates are generated deterministically or stochastically is 

secondary. Many optimization algorithms in particular meta-heuristics rely on a form of 

stochastic search. As a consequence of stochastic search the results are also stochastic and 

multiple restarts of the same algorithm produce different results.  

 

Figure 3: The iterative cycle of simulation-based optimization 

Usually, the simulation model itself is also stochastic with the consequence that the 

simulation results are random variables. In the particular case of the BioBoost problem we 

decided to implement a deterministic simulation model which produces crisp result values 

(instead of samples or random distributions) and always produces the same results for the 

same input values. Therefore, the BioBoost simulation model is actually a rather complex 

function that can be evaluated efficiently without relying on computationally expansive 

methods such as Markov Chain-Monte Carlo sampling or discrete event-based simulation. 

This makes it possible to simulate millions of different scenarios in the optimization step 

which is necessary to find good solutions.  

2.2 Metaheuristics 

Optimization problems can be categorized based on their characteristics; most importantly 

the type of variables, the type of constraints on input variables, and the characteristics of the 

objective function. This categorization is important because optimization methods can be 

tuned specifically for problem characteristics. It is often possible to use a standard solver if 

an optimization problem can be formulated in a way that it matches the characteristics of a 

certain problem class for which efficient and effective optimization methods have been 

developed. Examples are real-valued linear programming problems or convex optimization 

problems which can often be solved efficiently.  
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Optimization problems stemming from real world applications are often more complex and 

therefore must be simplified before an efficient standard solver can be applied. A major 

drawback of simplification is, however, that solutions for the simplified problem might not be 

optimal for the original problem or might be infeasible. In such cases it is therefore often 

necessary to implement new variants of optimization methods or to rely on very general 

solvers which are less efficient but are still able to find solutions to the original problem. 

For the BioBoost project we created a complex simulation model to be able to determine 

accurate and realistic estimates for different scenarios of technology implementation. The 

model has integer- and real-valued variables and is non-linear in the objective function 

because of non-linear costs for scaling plants and costs for feedstock. The BioBoost 

optimization problem can therefore be assigned to the class of mixed integer non-linear 

programming problems (MINLP).  

Meta-heuristics are methods for solving optimization problems that are not specific to a 

certain problem class [Glover2003]. They only describe the general framework for solution 

algorithms where certain steps must be adapted specifically to the problem. Many meta-

heuristics draw analogies to natural processes. Examples for well-known meta-heuristics are 

genetic algorithms, evolution strategies, tabu search, and simulated annealing. We 

performed experiments with different genetic algorithms and evolution strategies and found 

that a specifically tuned evolution strategy is able to produce comparatively good solutions. 

2.2.1 Evolution Strategies 

Evolution strategies [Rech1973] (ES) are considered as one of the earliest meta-heuristic 

and have been developed at around the same time as genetic algorithms (GA). Since their 

first conception many different variants of ES have been developed. The covariance matrix 

adaption evolution strategy (CMA-ES) [Hansen2001] is one of the most well-known variants 

and particularly effective for many multi-modal and real-valued objective functions. In 

evolution strategies, solution candidates are encoded as a fixed-length real-valued vector. 

ES are population-based algorithms and draw analogies to evolutionary processes in nature. 

The algorithm starts with a population of random solution candidates. New solution 

candidates are generated as stochastic variations of random parent solution candidates 

(mutation). The fitness of all generated individuals is evaluated and only the best solution 

candidates are kept for the next generation. This process of parent selection, variation and 

offspring selection is continued until a termination criterion is met. Important parameters of 

the algorithm are population size 𝜇, the number of offspring produced in each generation 𝜆 

and whether the new population is selected from parents and offspring (called “𝜇 + 𝜆”), or 

only from the offspring (called “𝜇, 𝜆”). In addition to mutation, recombination can be used to 

create new individuals out of two or more parents. 

For the BioBoost problem we implemented an ES variant that uses a mixed encoding of 

integer and real vectors and uses problem-specific mutation and crossover operators. We 
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found that variations that stochastically change solutions by changing elements of vectors 

often produced infeasible solutions. Therefore, we implemented operators that create 

stochastic variations on a semantic level (e.g. moving plants) and adapt the solution vectors 

accordingly. These operators proved to be much more effective than simply changing the 

solution vectors. 

3 Results 

The implementation is based on the open-source optimization framework HeuristicLab 

[Wagner2007] and has been developed as a plugin. Both the plugin itself as well as all the 

data, used to produce these results have been approved by the BioBoost-consortium and are 

also released as open-source3. 

The output of the simulation optimization process is not only optimized choices for locations, 

feedstock acquisition rations and transport routes but a plethora of support information, most 

importantly a per-plant cost breakdown as shown in Figure 4 that, on the one hand, helps to 

pinpoint the most promising initial locations as well as estimates for further expansion. 

 

Figure 4 Detailed Results Breakdown 

Finally, Figure 5 shows the visualization of transport vector for both feedstock and 

intermediate energy carrier as well as the production cost of transport fuel per ton encoded in 

the color palette of the individual regions. 

                                                
3 http://dev.heuristiclab.com/  
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