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Abstract – Load forecasting is vitally important for the electricity industry with in a deregulated economy. 
It has many applications including energy purchasing and generation, load switching, contract 
evaluation, and infrastructure development [1]. Time series methods are based on the assumption that 
the data have an internal structure, such as autocorrelation, trend, or seasonal variation. Time series 
forecasting methods detect and explore such a structure. Time series have been used for decades in 
such fields as economics, as well as electric load forecasting [2].   We present a short-term 5 days load 
forecasting applications for industrial plant with an electric arc furnace [3] in the City of Ravne, Slovenia. 
We present five different load-forecasting techniques: linear regression (off line) [4], ARIMA (off line), 
Winter’s multiplicative (off line) and real time Data Mining [7] [8] [9]. At short-term load forecasting linear 
regression, for which we use two time series: energy and production at the electric arc furnace. Next, 
we divide the forecasting model in two parts: ARIMA with predictor “loads” at the electric arc furnace 
and Winter's multiplicative without any predictor; in this case the electric arc furnace is off. IBM SPSS 
software was the tools of selection. 

Data Mining provides the means for making sense of tremendous volumes of data by automating the 
processes of categorising and clustering common elements, identifying trends and anomalies in the 
data, and predicting what would happen given those factors [7]. In this paper we discuss Data Mining at 
ARMA (Autoregressive and Moving Average Models) [9] and Data Mining at ART (Autoregressive Tree 
Models) [8].  For the development and improvements of forecasting we used the Microsoft technology: 
SQL server, Analysis Server and the WEB server. We briefly discuss and compare predictions with and 
without any predictors.  This means, the model uses only a one time series, energy measurements at 
the plant:                          

In addition, we show Long-term load forecasting samples [5] annual predictions for two points at the 
electrical transmission network in Slovenia.  The software tools were IBM SPSS.  We present two 
different load-forecasting techniques: ARIMA and seasonal models. Outliers can occur by forecasting, 
so we discuss some worst-case scenarios. We show forecasting quality factors for each forecasting 
model:  CL (Confidence Intervals), MAPE (Mean Absolute Percentage Error) and time series value at 
forecasting time.  In conclusion, we compare the results. 
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1 Load Forecasting using Linear Regression 
 

 

Many problems in engineering and science involve exploring the relationships between two or more 
variables. Regression analysis is a statistical technique that is very useful for these types of problems. 
For example, a load forecasting for an industrial plant with an electric arc furnace in the City of Ravne, 
Slovenia, supposing that the number of loads at the electric arc furnace is related to the energy 
consumption at the industrial plant (Figure 1, Figure 2). Regression analysis can be used to build a 
model for predicting electrical load as a given the number of loads at the electric arc furnace. The 
resulting model can also be used for business processing, on the electric market, such as buying right 
quantity of electrical energy for a another day.  
 
 

 
 

Figure 1: Load curves at plant Ravne for one year         
 

Figure 2: Correlation between number of loads 
at electric arc furnace and load at plant. 

 
Inspections of Figure 2 indicated, that although no simple curve will pass exactly through all the points 
that represent relationship. There is a strong indication that the points lie randomly around a straight 
line. It is reasonable that the mean of random variable 𝑌 is related to 𝑥 by a straight-line relationship: 

𝑌 = +𝛽1𝑥 + 𝜀              (1) 
 
𝛽0…….regression coefficient intercept,  

𝛽1 ……regression coefficient slope, 
𝑥……...regressor or predictor variable, 

𝑌...........criterion variable, 

𝜀 ……..random error term  𝑁(0, 𝛿2) , with mean zero and variance 𝛿2.  
 
 
The estimates 𝛽0 and 𝛽1 should result in a line that is a “best fit” to the data. The German scientist Karl 
Gauss proposed estimating the parameters 𝛽0  and  𝛽1 in order to minimise the sum of the squares of 
the vertical deviations.  We call this criterion for estimating the regression coefficients the method of 
least squares.  Advanced reader please refer to [4] to study properties of the least square estimators. 

Next we explain only the major steps to estimating 𝛽0 and 𝛽1, such as definitions: 
 

𝛽1̂ =
𝑆𝑥𝑦

𝑆𝑥𝑥
                      (2) 

𝛽0̂ = �̅� − 𝛽1̂. �̅�      (3)  
 

𝛽0̂…..observed intercept, is an unbiased estimator of the true intercept 𝛽0., 

𝛽1̂….. is an unbiased estimator of the true slope 𝛽1.  
 
𝑆𝑆𝑥𝑥 = ∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1                                            (4) 

 
𝑆𝑆𝑥𝑦 = ∑ 𝑦𝑖(𝑥𝑖 − �̅�)2𝑛

𝑖=1                                        (5) 
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n…..the number of observation in a sample. 

 

Error 𝜀  is a random variable normally distributed with a mean of 0 and variance  𝛿2: 
 
𝑒𝑖 = 𝑦𝑖 − �̂�𝑖                                                          (6)  
 
𝑒𝑖………...is called the residual. 
 
 

𝑆𝑆𝐸 = ∑ 𝑒𝑖
2𝑛

𝑖=1                                                       (7) 

 
𝑆𝑆𝐸……….error sum of squares.  

 
There is actually another unknown parameter in our regression model, 𝛿2  (the variance of the error 

term 𝜀 ): 
 

𝛿 2̂ =
𝑆𝑆𝐸

𝑛−2
                                                              (8) 

 

𝛿 2̂…..calculated value of  𝜀  with properties 𝑁(0, 𝛿2). 
 
 

In simple linear regression the estimated standard error of the slope and the estimated standard error 
of the intercept are: 

 

𝑆𝐸(𝛽1̂) = √
𝛿2̂

𝑆𝑋𝑋
                                                  (9) 

 

𝑆𝐸(𝛽0̂) = √𝛿 2̂ [
1

𝑛
+

�̅�2

𝑆𝑥𝑥
]                                     (10) 

 

respectively, where  𝛿 2̂ is computed from Equation 8 respectively. 
 
An important part of assessing the adequacy of a linear regression model is testing statistical 
hypotheses about the model parameters and constructing certain confidence intervals. Hypothesis 
testing in simple linear regression is discussed in the next section, and presents methods for 
constructing confidence intervals. To test hypotheses about the slope and intercept of the regression 
model, we must make the additional assumption that the error component in the model, 𝜀 , is normally 
distributed. Thus, the complete assumptions are that the errors are normally and independently 

distributed with mean zero and variance 𝛿2, abbreviated NID(0, 𝛿2). 
 

𝐻0: 𝛽1 = 𝛽1,0                                                       (11) 

𝐻1: 𝛽1 ≠ 𝛽1,0                                                       (12) 

 
𝐻0….null hypothesis, 

𝐻1…..alternative hypothesis. 
 
With which probability can we trust the hypothesis, that a calculated slope is equal to a real slope 𝛽1 

(𝐻0: 𝛽1 = 𝛽1,0 )?  We use the t-test to the confirm hypothesis: 

 

𝑇𝑜 =
𝛽1̂−𝛽1,0

𝑆𝐸(𝛽1̂)
                                                        (13) 

 

We would reject  𝐻0: 𝛽1 = 𝛽1,0 if: 

 
|𝑡0| > 𝑡𝛼

2
,𝑛−2                                                       (14) 

 
α……………………….... Significance (Sig). Standard values are 0,05 or 0,01. 
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(1-α)100[%]………Confidence Interval (CI, CL). Standard values are 95 % or 99 %. 

  
A similar procedure can be used for testing hypotheses about the intercept  𝛽0 : 
 

𝐻0: 𝛽0 = 𝛽0,0                                                       (15) 

𝐻1: 𝛽0 ≠ 𝛽0,0                                                       (16) 

 
Test statistic fort the intercept 𝛽0:  
                    

𝑇𝑜 =
𝛽1̂−𝛽0,0

𝑆𝐸(𝛽0̂)
                                                         (17) 

 
A method called the analysis of variance (ANOVA) can be used to test for significance of regression. 
The procedure partitions the total variability in the response variable into meaningful components as the 

basis for the test. At an F-test test statistic have a 𝐹1,𝑛−2 distribution.  The analysis of variance identity 

is as follows:  
 

𝐹0 =
𝑆𝑆𝑅
𝑆𝑆𝐸
𝑛−2

 = 
𝑀𝑆𝑅

𝑀𝑆𝐸
                                                   (18) 

 
𝑆𝑆𝑅 = ∑ (𝑦�̂� − �̅�)2𝑛

𝑖=1                                           (19) 

 

Where 𝑆𝑆𝑅 is the sum of the squared errors. We follows the 𝐹1,𝑛−2 distribution, and we would reject H0 

if: 
 
𝑓0 > 𝑓𝛼,1,𝑛−2                                                       (20) 

 
Fitting a regression model requires several assumptions. Estimation of the model parameters requires 
the assumption that the errors are uncorrelated random variables with mean zero and constant variance. 
Tests of hypotheses and interval estimation require that the errors be normally distributed. In addition, 
we assume that the order of the model is correct; that is, if we fit a simple linear regression model, we 
are assuming that the phenomenon actually behaves in a linear or first-order manner: 
 

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖             i=1,2…,n                           (21)    
                                                   
𝑒𝑖……residual 
 

𝑑𝑖 =
𝑒𝑖

√�̂�2
                   i=1,2…,n                           (22)  

    
𝑑𝑖 …..standardised residual. 
 

We may also standardise the residuals by computing. If the errors are normally distributed, 
approximately 95 % of the standardised residuals should fall within the interval (-2, +2). Residuals that 
are far outside this interval may indicate the presence of an outlier, that is, an observation that is not 
typical of the rest of the data. We test residual with a scatter chart, we put on x series predicted values 
and on y series standardised residual.  In an ideal situation all scatter plot points are equally distributed 
within the chart area.   

 

A widely used measure for regression model is following the ratio of the sum of squares 𝑅2 (coefficient 
of determination): 
     

𝑅2  =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
                                                (23) 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸                                                    (24)   
 
𝑆𝑆𝑇 ……total corrected sum of squares, 

𝑅2……. coefficient of determination. 
 
The values of coefficient of determination 𝑅2  should be at interval 0 ≤ 𝑅2 ≤ 1.  
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We would like to predict complete the load at the  industry plant in the City of Ravne, Slovenia for a 5 
days in advance. An independent predictor is the number of loads at electric arc furnace. Working time 
at arc furnace are depend from energy price tariff policy over a week and a business production contracts 
at the arc furnace. As a result, at a Sunday 88 % of load at plant are depend from arc furnace production. 
Other production facility at a plant working for 5 days and over weekend is no production.  At a five 
working days we have additive loads form arc furnace and other production facility.  

     Coefficient of determination 𝑅2 is relatively low 0,6. We explain  60 % of energy consumption at plant  
in a year is dependent from the number of loads at the electric arc furnace. Therefore 40 % of loads 
cannot be explained with a linear regression model. State of the art of load forecasting is 90 %, so the 
linear regression model is robust, and we looking next for a better solution.   
 
Table 1: Model summary 

Model Summary b 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 ,771a ,595 ,594 94380,865 

a. Predictors: (Constant), Number of Loads at Electric Arc Furnace 

b. Dependent Variable: Energy measurements at plant 

 
Independent variable  explain 60% per cent of variance (R Square) in load, which is highly significant, 
as indicated by F-value of 534,6  in the table below, that F-test say we can trust 𝛽0 and 𝛽1   > 99,9 %.  

 
Table 2: ANOVA test 

ANOVAb 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 4,762E12 1 4,762E12 534,560 ,000a 

Residual 3,242E12 364 8,908E9   

Total 8,004E12 365    

a. Predictors: (Constant), Number of Loads at Electric Arc Furnace 

b. Dependent Variable: Energy measurements at plant 

 

An examination of the t-test indicates that number of loads at electric arc furnace contribute to electric 

load, t-test say we can trust 𝛽0 > 99,9 % and 𝛽1 > 99,9 %.   

 

Table 3: Coefficients 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 266.469,968 9.770,475  27,273 ,000 

Number of Loads at 

Arc Furnace 

28.822,853 1.246,633 ,771 23,121 ,000 

a. Dependent Variable: Energy measurements at plant 

 
Equation of linear regression model is followed:   
 
[Load Forecasting] = 266.470 + 28.823[Number of Loads at Electric Arc Furnace] +𝜀      ……….. (25) 
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Figure 3: Scatterplot of residual against predicted 
values. 

 

Figure 4: Normal P-P plot of regression 
standardized residual. 

 
From the scatterplot of residuals against predicted values (Figure 3), you can see that there is no clear 
relationship between the residuals and predicted values, consistent with the assumption of linearity. The 
normal plot of regression standardised residuals (Figure 4) for dependent variable also indicates a 
relatively normal distribution.  
 

 
2   Short term load forecasting with seasonal ARMA 

 
 
We understand from Section 1 that only 60 % annual energy consumption is directly dependent on 
number of loads at electric arc furnace. In the next section we show a way of predicting remaining 40 % 
of energy consumption.  The statistic software tool IBM SPSS - Forecast module help as by research.  
Visual inspection of Figure 1 show as production timetables over a year. First, two quartiles of the year 
the arc furnace was in normally in operation, next at July the arc furnace get for 3 weeks at the outage, 
and finally the last 6 months back to the grid with a full production. This gave us the possibility of 
researching separately two operational cases at the energy complex: production with arc furnace and 
production without arc furnace. ARMA (Autoregressive Moving Average Models) is the appropriate 
prediction model for first case, and Winter’s multiplicative is the appropriate prediction model for second 
case.  
   

2.1 Autoregressive Models  
 
A stochastic model [2] that can be extremely useful in the representation of certain practically occurring 
series is the autoregressive model. In this model, the current value of the process is expressed as a 
finite, linear aggregate of previous values of the process and a random shock at. Let us denote the 

values of a process at equally spaced times t, t − 1, t − 2, . . . by zt, zt−1, zt−2, zt−3 , . . .. Also let  z̃t= zt– 
μ   be the series of deviations from μ. Then 

 

z̃t= φ1 z̃t−1 + φ2z̃t−2 +・ ・ ・+φp z̃t−p   +at    (26) 

is called an autoregressive (AR) process of order p. The reason for this name is that a linear model 
 

z̃t= φ1 x̃1 + φ2x̃2 +・ ・ ・+φp x̃p   +at     

 
Relating a “dependent” variable z to a set of “independent” variables x1, x2, . . . , xp, plus a random error 

term a, is referred to as a regression model, and z is said to be “regressed” on x1, x2, . . . , xp. In (29) 

the variable z is regressed on previous values of itself; hence the model is autoregressive 
The model contains p + 2 unknown parameters μ, φ1, φ2 , . . ., φp , δa

2. Which in practice have to be 

estimated from the data. The additional parameter  
is the variance of the white noise process at .  
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2.2 Moving Average Models 
 
 The autoregressive model (26) expresses the deviation z̃t  of the process as a finite weighted sum of p 

previous deviations z̃t−1, z̃t−2, …,z̃t−p   +at  ,  of the process, plus a random shock at. Equivalently, as 

we have just seen, it expresses z̃t  as an infinite weighted sum of the a’s. Another kind of model, of great 
practical importance in the representation of observed time series, is the finite moving average process. 
Here we take  z̃t linearly dependent on a finite number q of previous a’s. Thus, 
 

z̃t= = at − θ1 at−1 −θ2 at−2 −・ ・ ・−θq at−q                                           (27) 

 
is called a moving average (MA) process of order q. The name “moving average” is somewhat 

misleading because the weights 1, θ1  −θ2  −・ ・ ・−θq, which multiply the a’s, need not have total 

unity nor need they be positive.  
 
It contains q + 2 unknown parameters μ, θ1, θ2, . . . , θq , δa

2  , which in practice have to be estimated 

from the data. 
 

 

2.3 Short-term Load Forecasting Application  
 

 
Forecasting model design is the process where we start with a coarse model, and through more iteration 
and reflections get closer to the best fit model. The learning time interval from observation time series, 
which the model parameter raises  (μ, 𝜑1, 𝜑2 , . . ., 𝜑𝑝 , 𝛿𝑎

2  and μ, 𝜃1, 𝜃2, . . . , 𝜃𝑞 , 𝛿𝑎
2), should not be too 

long or too short. Forecasting models are alive, because they learn permanently parameters from the 
measurement data.  
    
ARIMA (0,0,1)(0,1,1) model was made from observed data from 1.1.2008 to 7.4.2008. As an 
independent predictor we used the number of loads at the electric arc furnace.  

The time series model supports both exponential smoothing and ARIMA model. Exponential smoothing 
model types are listed by their commonly used names such as Holt and Winters' Multiplicative. ARIMA 
model  for our example is using the standard notation ARIMA(0,0,1)(0,1,1), where 0 is the order of 
autoregression, 0 is the order of differencing (or integration), and 1  is the order of moving-average, and 
(0,1,1) are their seasonal counterparts.  

Forecasting model has determined that short-term load is best described by a seasonal ARIMA model 
with no order of differencing. The seasonal nature of the model accounts for the seasonal peaks that 
we saw in the week series plot (Figure 6).  

 

 
 
Figure 5: Observed, model assessment and prediction for 5 days at 15th week, Day 2,  2008. 
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The model statistics Table 5 provides summary information and goodness-of-fit statistics for estimated 
model. First, notice that the model contains one predictor. Model offers a number of different goodness-

of-fit statistics, we opted only for the stationary 𝑅2 value. This statistic provides an estimate of the 
proportion of the total variation in the series that is explained by the model and is preferable to ordinary 

𝑅2   when there is a trend or seasonal pattern, as is the case here. Larger values of stationary R-squared 
indicate better fit. A value of 0,87 means that the model does an excellent job of explaining the observed 
variation in the series.  

The Ljung-Box statistic, also known as the modified Box-Pierce statistic, provides an indication of 
whether the model is correctly specified. A significance value less than 0,05 implies that there is structure 
in the observed series which is not accounted for by the model. The value of 0,77 shown here is not 
significant, so we can be confident that the model is correctly specified. 

 
Table 5: Model statistic 

Model 
Number of 
Predictors 

Model Fit statistics Ljung-Box Q(18) 

Number of 
Outliers 

Stationary R-
squared Statistics DF Sig. 

Sum_Of_Field3-Model_1 1 ,866 11,670 16 ,766 0 

 
 

Table 6: Prediction statistic for a five days – MAPE is 6%. 

Date 
Week, 
Day Prediction UCL LCL Observed 

Prediction 
Error [%] 

10.4.2008    15 Tue 639.944 750359 529529 623.695 2,6 

11.4.2008    15 Wed 593.950 719671 468228 548.449 8,3 

12.4.2008    15 Thu 549.363 675084 423641 594.051 -7,5 

13.4.2008    15 Fri 539.868 665590 414146 601.958 -10,3 

14.4.2008    15 Sat 413.232 538954 287510 410.700 0,6 

 
 

 

 
Figure 6: Seasonal week model (7,5)  in observed data at July 2008. 
 

 
3   Short Term Load Forecasting when Data Mining 

 
Section three introduces data mining applications of automatic forecasting, that means we will link 
knowledge and conclusion from section 1 and section 2 into one new nonlinear prediction model.  
Introducing of automatic prediction at load prediction called data mining. Linear regression model [4] 
and seasonal ARMA [2] from the previous section were replaced with a nonlinear prediction model. This 
nonlinear model was realised according to the methodology of ART [8] (Autoregressive Tree Models), 
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ARMA and sessional ARMA [7] [9].  ART and ARMA methodology can be explained in several ways, 
including the theory of digital filters [10], so also the spectral method in other words, he does not require 
additional amplitude predictors to the basic time series.  

 
 
 
Figure 7: Data mining process 
 
It took entrusted machine learning to determine the optimally parameters for the selected forecast 
method. For all data stored in a database use machine learning and statistics, so we have to build a 
structure called data mining [7].  
     Data mining is an interdisciplinary field of computer science, seeking patterns in large amounts of 
data through the use of artificial intelligence, machine learning, and statistics and data warehouse. The 
main goal of data mining is to extract information from data in an understandable form for later use. The 
basic idea of data mining is that the algorithm automatically extracts the characteristic pattern of sample 
data, the pattern is then used to calculate for example forecasts. The architecture of data mining is 
compiled from data warehouses and associated servers for analyses. The data visualising is performed 
with a WEB server. Analysis Server communicates with the data server via XMLA data formats (XML 
for Analysis). XMLA is an industry standard for data transmission in a systems for the analysis, which is 
format independent of the source and recipient data. 
 
 

3.1 Real-Time Data Mining on the WEB 
 
Linear regression forecasting method and ARMA forecasting, for the described application were first 
time published directories at the conferences ERK 2009 [6] and CIRED 2011 [5], then we have a project 
carried out with the software IBM SPSS, which means manually preparing data and forecast for each 
steps. This method is does not do well when applied for the daily work in a modern enterprise energy-
consuming and for the modern IT applications is somewhat out-dated. So we made a technological leap 
to the latest IT technology and use of the data mining technology. The applied IT system has the 
following structure: 
 

• Module to load observed data to the data warehouse. 
• Time-sharing controller and communication controller.  
• SQL data server. 
• The server for analysis with data mining structure. 
• WEB server. 

 

    We are learning the forecast model in sliding mode with 160 historical data. Load forecasting statistic 
is a  real time WEB server applications (Table 7, Figure 8 and Figure 9), that show  quality forecasting 
criteria: MAE - an absolute error of prediction, MAPE - relative error of prediction, RMSE - standard 
deviation of forecast errors.  
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Figure 8: Time series of prediction and observed data 1 
day ahead.   
 

Figure 9: The correlation between the 
observed and prediction 1 day ahead.   
. 

 

    One problem at work may be missing measurement data. Missing measurement data can be replaced 
with the previous measurement or mean value of time series. A substitution works well to some extent. 
Machine learning algorithms themselves react to the data holes in the measurement data. For time 
series with missing data forecast models automatically become simpler. Autoregressive tree (ART) 
become a lower grades, which returns lower predictive significance.  
   In large production systems with arc furnaces it is difficult to measure production data, arc furnace 
technology process is too complex. It is interesting to note, that the load forecasting by consideration 
predictor “number of loads at electric arc furnace” and without this predictor differ only by a few %. 
 

Table 7: Prediction statistic for 130 samples. 
 

Prediction 
for a Day 

  𝑅2 AVG  
measurements 

STDEV 
measurements 

AVG 
prediction 

STDEV 
prediction 

MAE MAPE RMSE 

+5 0,36 441.054 141.209 431.911 111.789 92.377 27,5 113.107 

+4 0,28 440.322 142.076 432.756 109.034 97.250 29,6 120.284 

+3 0,37 440.265 143.129 433.972 109.567 90.999 27,9 113.231 

+2 0,43 439.630 143,994 439.262 113.404 85.064 27,1 108.680 

+1 0,72 438.210 144.951 437.343 123.829 59.186 17,6 77.032 

 

Machine learning is carried out automatically, hourly for short-term forecast, once a day for a load 
forecasting average or daily extremes. Basic parameter for ARMA and ART are determined 
automatically by machine learning. After prediction we calculate the MAE, MAPE and RMSE of 
prediction. We developed a small simulation program for advanced optimisation. The simulation shows 
us how to allocate the weights to smooth the combination of seasonal ARMA and ART. Simulation 
algorithm is carried out step by step, first to move to the database to query learning time series, next 
learn a model, predict and save data back to database. If the simulation of model ideas are good, we 
accomplished switch to real-time forecasting and only the data source will be changed to real-time 
measurement. The simulation program for daily hourly extremes for 6 months be carried out for 1 hour 
with standard hard drives at server.   
     Finally the result was MAPE 17 % for all production conditions in one year. Please make a focus, 
that a observed time series is non-stationary and hides three different models inside. Figure 9 show us 
how data mining predicts cover switch from full arc furnace production, to three weeks stop. It is one 
outlier in prediction time series, after that prediction becomes stationary with low error ahead.  
 
 

4   Long-Term Load Forecasting of Seasonal Models 
 

4.1   Problem of Power Flow 
 

The problem of power flow is the calculation of the voltage and phase angles of the voltage at each 
node in the fixed symmetrical three-phase system. Consequently, from this calculated flow of active and 
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reactive power in transmission lines are transformers. We can also count losses. Starting point, input 
computer analysis of power flows, the single-pole circuit diagram consisting of: data transmission lines, 
data hubs and data transformers. As shown in Figure 10, each node belongs to one of 4 variables 
𝑉𝑘,𝛿𝑘,𝑃𝑘,𝑄𝑘. After two variables representing the input data for the power flow computation programs, 
two are calculated output variables. Due to the transparency, transported to the power node, divided 
into the generator and load: 

 
𝑄𝑘 = 𝑄𝐺𝑘 − 𝑄𝐿𝑘                 (28) 

𝑃𝑘 = 𝑃𝐺𝑘 − 𝑃𝐿𝑘     (29) 
 

 
Each node is categorised in one of three types of nodes: 

 Swing, slack node - normally is only one "swing" node, which for convenience is marked with 

1. Swing node is a reference node to which the 𝑉1 = 1   and phase angle  𝛿𝑘 = 00. The 
programs for power flow account 𝑃𝑙  and 𝑄𝑙. 

 Load node - input data are 𝑃𝑘  and 𝑄𝑘. The program for power flow account 𝑉𝑘  and 𝛿𝑘. Most 
of the nodes are a type of “load." 

 Voltage controlled node- input data are 𝑉𝑘 and 𝑃𝑘. The classic program for power flow account 

𝛿𝑘and 𝑄𝑘. An example of such a node is connected to a generator or static compensator.  
     

 
 

Figure 10:  Node variables  𝑉𝑘,𝛿𝑘,𝑃𝑘,𝑄𝑘 
 

We are limited to the basic theoretical methods of implementation, to the extent necessary for an 
understanding of the article. 
     

4.2 Long Term Load Forecasting at Two Nodes  
 
The aim of the project was to carry out forecasting monthly average power flow for a period of one year 
and to predict the monthly hourly maxima of flows.  Geographic distributed power systems are difficult 
to identify an appropriate predictor, or arrive at an appropriate database for predictors. For long-term 
forecasting we had available only historical time series of basic phenomenon - the flow of power. 

We carried out a long-term forecast for the two energy nodes.  Node 1 is called Ajdovščina, 
node 2 is called Krško. The aim was to carry out prediction of 12 months. Today’s state of art prediction 
is 6 month, but our experiment for twelve months showed good result at MAPE from 5,4 % to 7,1%.  In 
charts (Figure 11, 12, 13, 14) SUM are the average monthly value of P, MAX are monthly hour extreme 
value of P.  Input average time series and maximum time series was calculated with SQL aggregate 
functions from hourly measurements of P and Q at the interval from 1.1.2004 to 31.12.2008.  The model 
did not use an independent predictor. Visual inspection of the shape at input power flow time series, for 
different year’s, shows that they are other somewhat similar shapes to each other, but certainly we found 
appropriate patterns of seasonal type, for the node 1 with the optimal model Winter’s additive and node 
2 with the simple seasonal forecast model.  Predicted time interval was from 1.1.2009 to 31.12.2009. 
The result was calculated with an expert modeller at forecast module of a statistic software IBM SPSS.   
Figure 11 and Figure 13 show long term load forecasting at 12 months with upper and lower 95% 
confidence intervals.    

We also got real measurement data from 1.1.2009 to 31.12.2009 and they were compared with 
predicted values.  Quality of long term forecasting determines a relative difference between predicted 
data and measurements data, relative prediction error, for year 2009, follow at Figure 12 and Figure 14. 
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Figure 11: Observed and forecast for twelve months  
- node 1 Ajdovščina. 

Figure 12: Load forecast error at node1. 

 
 
 

 

 

  
Figure 13: Observed and forecast for twelve 
months - node 2 Krško. 

Figure 14: Load forecast error at node 2. 
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Table 8: Long-term load prediction statistic 
Prediction value description 
 

Model type MAPE Forecasting period 

Sum month value of P at node 1 Winters 
Additive 

5,4 % 12 months 

Monthly hour extreme values  of P at node 1 Simple 
Seasonal     

7,1 % 12 months 

Average month value of P at node 2 Simple 
Seasonal 

6,2 % 12 months 

Monthly hour extreme value  of P at node 2 Simple 
Seasonal 

6 % 12 months 

 

 

Conclusion 
 
Forecasting is a mathematical realisation of the old folk say history repeats itself. In this paper we show 
that history, in our cases in the energy sector, reiterates per hour (hourly maxima) daily for 5 days, 7 
days, month and year. Of course, this does not say just by using coffee extracts pots, but with the help 
of modern statistics and mathematics, which predict the most likely value, with the addendum that the 
95% of the predicted values of the population located in the interval of the confidence limit. Shown in 
the article they could alternatively be calculated by using the mechanical model, which in other words 
means a physical modelling of the observed system. Machine models for the cases described here are 
likely to be complex and lengthy calculations and the results are quite authentic. Model predictions we 
have for each observed point analysis calculated separately. The models forecast may change over 
time, depending on the characteristics of the observed phenomenon. Statistical methods require 
verification of validity of the method of input data - assumption testing, data considerations, which can 
sometimes be a big part of the mathematical solution in the cartridge. 
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