

Einfluss von Hochspannungs-Gleichstromsystemen auf die Zuverlässigkeit von Übertragungsnetzen

Gerhard Theil Technische Universität Wien Institut für Energiesysteme und Elektrische Antriebe 1040 Wien, Gußhausstraße 25 gerhard.theil@tuwien.ac.at

Zentrale Fragestellung

Untersuchung der Auswirkung von Ausbaumaßnahmen auf die Netzzuverlässigkeit am Beispiel eines realen Hochspannungs-Übertragungsnetzes

A) Ringschlüsse im 380-kV-Drehstromnetz

B) Überlagertes Hochspannungs-Gleichstromnetz

Betrachtete Strukturen des Gleichstromnetzes:

- Punkt-zu-Punkt (HGü-Leitung)
- Baumstruktur
- Schienenstruktur
- Ring

Methodische Vorgangsweise

- Mathematische Modellierung der HGÜ-Systeme
- Implementation der HGÜ in die Wechselstrom-Lastflussrechnung
- Entwicklung von Algorithmen zur Simulation der Regelungseigenschaften der HGÜ
- Implementation der HGÜ in die Zuverlässigkeitsanalyse-Software
- Präsentation von Zuverlässigkeitsanalysen für mehrere Varianten eines realen 380-kV/220-kV-Übertragungsnetzes

Modellierung der HGÜ-Systeme

Modell einer Stromrichterbrücke

- u, e Wechselspannungen auf Primär- und Sekundärseite des Stromrichtertransformators
- pik, qik, pDC, qDC Wirk- und Blindleistung auf der Primär- und Sekundärseite des Stromrichtertransformators
- ü Variable Spannungsübersetzung des Stromrichtertransformators, ü = u/e
- yt Längsimpedanz des Stromrichtertransformators
- uDC Gleichspannung am Stromrichter
- iDC Gleichstrom des Stromrichters (positiv: Gleichrichterbetrieb, negativ: Wechselrichterbetrieb)

Normierte Stromrichtergleichung (in per-unit)

$$u_{DC} = k.e.\cos\theta - x_c i_{DC}$$

Mathematische Modellierung des Stromrichters

Stromrichtergleichung (in per-unit)

$$u_{DC} = k.e.\cos\theta - x_c i_{DC}$$

$$k = \frac{3\sqrt{2}.n_{B}U_{b}}{\pi.U_{DC,b}} \qquad \qquad x_{C} = \frac{3.n_{B}X_{c}.P_{DC,b}}{\pi.U_{DC,b}^{2}}$$

n_B Anzahl der Brücken

U_b Wechselstrom-Bezugspannung in kV

U_{DC,b}, P_{DC,b}: per-unit- Bezugsgrößen für Spannungen und Leistungen des Gleichstromsystems in kV bzw. MW

X_c Kommutierungsreaktanz in Ohm

θ Zünd- bzw. Löschwinkel

Mathematische Modellierung des Stromrichters

Stromrichter-Strom

$$i_{DC} = \frac{k.e.\cos\theta - u_{DC}}{x_c}$$

Gleichstromleistung

 $p_{DC} = i_{DC} . u_{DC}$

Kommutierungsblindleistung

$$q_{DC} = |p_{DC}| \sqrt{\frac{(k.e_k)^2}{u_{DC}^2} - 1}$$

Modellierung des Gleichstromnetzes

In Vektor- Matrizendarstellung:

 $i_{DC} = G.u_{DC}$

G Leitwertsmatrix, Dimension: Anzahl der Knoten des Gleichstromnetzes

Das Gleichungssystem ist bei Monopolar- und bei Bipolarsystemen identisch, unterschiedlich sind lediglich die Gleichungen zur Umrechung der Admittanzen auf per-unit.

Monopolarsystem

 $Z_{DC,bb} = \frac{U_{DC,b,LE}^2}{P_{DC,b}}$

 $Z_{DC,bb} = \frac{U_{DC,b,LL}^2}{2P_{DC,L}}$

Bipolarsystem

Kombination des Gleich- und Wechselstromsystems

An der Schnittstelle zwischen Stromrichter und Gleichstromnetz muss die folgende Bilanzgleichung erfüllt sein:

$$\Delta i_{\mathrm{b,k}} = i_{\mathrm{DC,k}} - g_{\mathrm{DC,k}} \cdot u_{\mathrm{DC}} = 0$$

 $\mathbf{g}_{\text{DC},k}$ k-te Zeile der Admittanzmatrix \mathbf{G} des Gleichstromnetzes

Bilanzgleichungen für die Wechselstromseite des Stromrichters:

$$\begin{split} \Delta p_k &= p_{g,k} - p_{b,k}(u_j, \varphi_{u,j}, e_k, \varphi_{e,k}) - p_{DC,k}(e_k, u_{DC,k}, \theta, ...) = 0 \\ \Delta q_k &= q_{g,k} - q_{g,k}(u_j, \varphi_{u,j}, e_k, \varphi_{e,k}) - q_{DC,k}(e_k, u_{DC,k}, ...) = 0 \\ \mathsf{p}_{g,k}, \mathsf{q}_{g,k} & \text{Vorgegebene Wirk- und Blindleistungsbilanzen in Knoten k (0, da sich an Knoten k weder Lasten noch Einspeisungen befinden)} \\ \mathsf{p}_{b,k}, \mathsf{q}_{b,k} & \text{Berechnete Wirk- und Blindleistungsflüsse in Knoten k aus j} \end{split}$$

Zustandsgrößen des Stromrichters

Wechselstromseite: e, φ_e, ü Gleichstromseite: u_{DC}, cosθ

Übersetzungsverhältnis ü wird hier als fester Eingabewert betrachtet, es verbleiben somit **4** Zustandsgrößen. Für deren Bestimmung werden ebenso viele Vorgabewerte benötigt.

Festlegung der Stromrichter-Zustandsgrößen

Den 4 Zustandsgrößen e, φ_e, u_{DC}, cosθ stehen zur Bestimmung gegenüber: Bilanzgleichungen:

$$\Delta i_{b,k} = i_{DC,k} - g_{DC,k} \cdot u_{DC} = 0$$
 (7)

$$\Delta p_{k} = p_{g,k} - p_{b,k}(u_{j}, \varphi_{u,j}, e_{k}, \varphi_{e,k}) - p_{DC,k}(e_{k}, u_{DC,k}, \theta, \dots)$$
(8)

$$\Delta q_{k} = q_{g,k} - q_{g,k}(u_{j}, \varphi_{u,j}, e_{k}, \varphi_{e,k}) - q_{DC,k}(e_{k}, u_{DC,k}, \dots)$$
(9)

Es fehlt noch eine weitere Gleichung. Diese resultiert aus einer Sollwertvorgabe.

Stromrichter-Sollwertvorgabe

Möglichkeiten:

- Wirkleistung oder Strom (Leistung bzw. Strom vom Stromrichter in das Gleichstromnetz eingespeist oder von dort abgenommen)
- Konstante Stromrichterspannung u_{DC}
- Konstanter Zünd-/Löschwinkel θ bzw. cosθ

Mathematisches Modell der Wirkleistungs- oder Stromsollwertvorgabe

$$\Delta p_{DC,k} = p_{DC,soll,k} - p_{DC,k}(u_{DC,k}, u_{DC,l},...)$$
(10)

Mathematisches Modell der Spannungs- und Zünd-/Löschwinkelvorgabe

Gleichspannung oder cosθ wird aus dem Lösungsgleichungssystem eliminiert,

analog zur Behandlung von Spannungsbeträgen bei PV-Knoten

Zustandsgrößen des Wechselstromsystems

Gemäß klassischer Lastflussrechnung: Knotenspannungsbeträge und Spannungswinkel

Bestimmung durch Wirk- und Blindleistungsresiduen der Knotenbilanzen

$$\Delta p_j = p_{g,j} - p_{b,j}(u_j, \varphi_{u,j}, e_k, \varphi_{e,k}, \dots)$$

$$\Delta q_j = q_{g,j} - q_{g,j}(u_j, \varphi_{u,j}, e_k, \varphi_{e,k}, \dots)$$

j: 1 ... n-1 (n Knoten, 1 Slack), Δq_i nicht relevant für PV-Knoten

Stromrichterregelung, Hierarchiestufe 1

Ziel: Erfüllung von Sollwertvorgaben

Bez.	p _{DC} , i _{DC}	Cosθ	u _{DC}	е	φ _e	ü	Res.1 (7)	Res.2 (10)	Res.3 (8)	Res.4 (9)
А	1	fix	var	var	var	fest	$\Delta i_{b,DC}$	/	Δр	Δq
В	fix	var	var	var	var	fest	$\Delta i_{b,DC}$	Δp_{DC}	Δр	Δq
С	fix	var	var	var	var	fest	$\Delta i_{b,DC}$	Δi_{DC}	Δр	Δq
D	1	var	fix	var	var	fest	$\Delta i_{b,DC}$	/	Δр	Δq

ü immer fest gemäß Eingabe

Res.3 und Res.4 bestimmen Wechselstrom-Zustandsgrößen e und ϕ_e Res.1 immer aktiv, damit Knotenbilanz Stromrichter – Gleichstromnetz erfüllt ist, es verbleibt ein Freiheitsgrad.

Variante A), D) Direkte Festlegung einer der Zustandsgrößen U_{DC} oder cosθ, kein Residuum Res.2 erforderlich

Variante B), C) Festlegung einer der abhängigen Größen p_{DC} oder i_{DC} durch Residuum Res.2

Stromrichterregelung, Hierarchiestufe 2

Übergeordnete Regelung zur Erreichung einer

globalen Zielvorgabe (Minimierung einer Zielfunktion) erfolgt durch Variation der Sollwertvorgaben mittels eines Optimierungsverfahrens

Zielfunktionen:

A) Summe der Grenzwertverletzungen (Erfüllung von Sicherheitskriterien)

B) Minimale Verluste, Sicherheitskriterien als Nebenbedingungen

Optimierungsalgorithmus:

Evolutionsstrategie

Evolutionsstrategische Optimierung

Individuum: Vektor von Objektparametern

(Stromrichtersollwerte cosθ, u_{DC}, p_{DC}, i_{DC}, ferner ü - ev. auch von Netztransformatoren -, |u| von PV-Knoten)

Vektor von Strategieparametern

(Streuungen der Objektparameter)

Variation der Elternindividuen

durch Variation der Objektparameter entsprechend der Strategieparameter => Nachkommen

Selektion der besten Nachkommen

(Minimale Zielfunktion, keine Grenzwertverletzungen)

=> Neue Elterngeneration

Lösung des kombinierten Gleich/ Wechselstrom-Problems nach Newton-Raphson

- Zusammenfassung sämtlicher Residuen des Gleichund Wechselstromsystems im Vektor Δr,
- Zusammenfassung sämtliche Zustandsgrößen in Δx
- Bilden der Funktionalmatrix F der Residuen bezüglich Zustandsgrößen

Es ergibt sich das Lösungsgleichungssystem:

 $\Delta r = F.\Delta x$

Bzw. die iterative Prozedur:

$$\Delta \mathbf{x}^{\nu} = \mathbf{F}^{-1} . \Delta \mathbf{r}^{\nu - 1}$$

$$\mathbf{x}^{\nu} = \mathbf{x}^{\nu-1} + \Delta \mathbf{x}^{\nu}$$

Zuverlässigkeitsanalyse

Aktivitäten bzw. Algorithmen:

- Simulation von Betriebsmittelausfällen (bis 4. Ordnung)
- Ermittlung der Wahrscheinlichkeiten der Ausfälle (Markov- Methode)
- Bewertung der Ausfallfolgen mittels Fehlereffektanalyse, Simulation korrektiver Maßnahmen (durch Lastflussrechnung und Lastflussoptimierung)
- Wichtung der Ausfallwahrscheinlichkeiten mit dem Bewertungsindex der Ausfallfolgen,
- Akkumulation der gewichteten Ausfallwahrscheinlichkeiten zu System-Zuverlässigkeitsindizes (Ausfallhäufigkeit, Nichtverlässlichkeit)

Resultate

Struktur des Hochspannungs-Drehstromnetzes

Externes Netz: Ward Äquivalent

Strukturen der HGÜ-Netze

Strukturen der HGÜ-Netze

Stromrichtertechnik:12-pulsig, Bipolarsysteme, ±500kV

Regelungsparameter (Minimierung von Grenzwertverletzungen):

- Sollleistungen der Stromrichter in Knoten B, D, F, H, J ,L
- Sollspannung des Stromrichters in Knoten G
- Stufenstellungen der Stromrichtertransformatoren
- Stufenstellungen der Netztransformatoren 380-kV/220-kV

Netz- und Regelungsvarianten, Bezeichnungsweise

1. Zeichen: Netzvariante Drehstromsystem

Nr.3: 380-kV-Netz gemäß Abb. "Drehstromnetz" braun Nr.2: Wie Nr.3, Transfer B reduziert um 700MW Nr.4: Offene Ringe im 380-kV-Netz geschlossen (grün => braun)

2. Zeichen: Netzvariante Gleichstromsystem

- 'b': Baumstruktur
- 'c': Schienenstruktur
- 'd': Ringnetz
- '-': kein Gleichstromnetz

3. Zeichen: Regelungsvariante

- 'p': Sollleistungen und Spannungen der Stromrichter,
 - PV-Knotenspannungen,

Stufenstellungen der Stromrichtertransformatoren und Phasenschieber Kein DC-Netz: Phasenschieber und PV-Knoten

- 't': Zusätzlich Stufenstellungen der Netztransformatoren
- 'o': Keine Regelung mit Ausnahme der Generator-PV-Knoten

Zuverlässigkeitsdaten der Netzkomponenten

Stromrichtertransformatoren (Standardwerte für Transformatoren): Ausfallhäufigkeit 0,116/a, mittlere Ausfalldauer 28,6h

Stromrichterbrücken (angenommen): Ausfallhäufigkeit 0,022/a, mittlere Ausfalldauer 24h

Restliche Betriebsmittel: Standardwerte

System- Energienichtverlässlichkeiten ohne Optimierung

Sollwerte bleiben unverändert gemäß Vorgabe

Effizienz: Ring (d) vor Schiene (c) vor Baum (d), jedoch 380-kV-Ring (4) am besten

System- Energienichtverlässlichkeiten mit Optimierung

Sollwerte werden zur Minimierung von Grenzwertverletzungen verändert

Verbesserungspotential durch Regelung in allen Varianten vorhanden, jedoch in Netzvariante 3 ohne Gleichstromnetz höher als mit Gleichstromnetz

System- Energienichtverlässlichkeiten Einfluss der Stromrichter-Ausfallhäufigkeiten

-g: Basiswerte, -h: um Faktor 10 erhöhte Ausfallhäufigkeiten

Lastflussberechnung mit Verlustminimierung

Bei Varianten mit Gleichstromnetz höhere Optimierungsgewinne infolge größerer Anzahl von Freiheitsgraden

Spiegelt sich dies auch in den Absolutwerten der Verluste wider? Siehe nächste Folie

Lastflussberechnung mit Verlustminimierung

Verluste, Absolutwerte

Ring (d) tendentiell besser als Baum (b) und Schiene (c), jedoch geringste Verluste bei 380-kV-Ring (4)

Lastflussberechnung mit Verlustminimierung

Leistungsverteilung

Zusammenfassung

- Ein überlagertes Gleichstromnetz bewirkt bei allen betrachteten Strukturvarianten eine deutliche Verbesserung der Systemzuverlässigkeit, und zwar bereits ohne evolutionsstrategische Parameterregelung.
- Das Verbesserungspotential durch Parameterregelung ist bei den Netzvarianten mit Gleichstromnetz geringer als bei den anderen Varianten.
- Die Gleichstromnetz-Ringstruktur erbringt das beste Ergebnis, gefolgt von der Schienenstruktur und danach der Baumstruktur.
- Die mittels Parametervariation erreichbaren Verlustreduktionen fallen bei den Varianten mit überlagertem Gleichstromnetz höher aus als bei den anderen vergleichbaren Systemen.
- Sie erreichen jedoch nicht das Ausmaß der Variante "vollständig ausgebautes 380-kV-Netz".

Zusammenfassung

Die Resultate der vorliegenden Untersuchungen lassen somit den Schluss zu, dass ein Ausbau der 380-kV-Spannungsebene für das vorliegende System sowohl hinsichtlich Zuverlässigkeit als auch hinsichtlich Verluste vorteilhafter ist als die Überlagerung eines schwächer dimensionierten 380-kV-Netzes durch ein Gleichstromnetz.