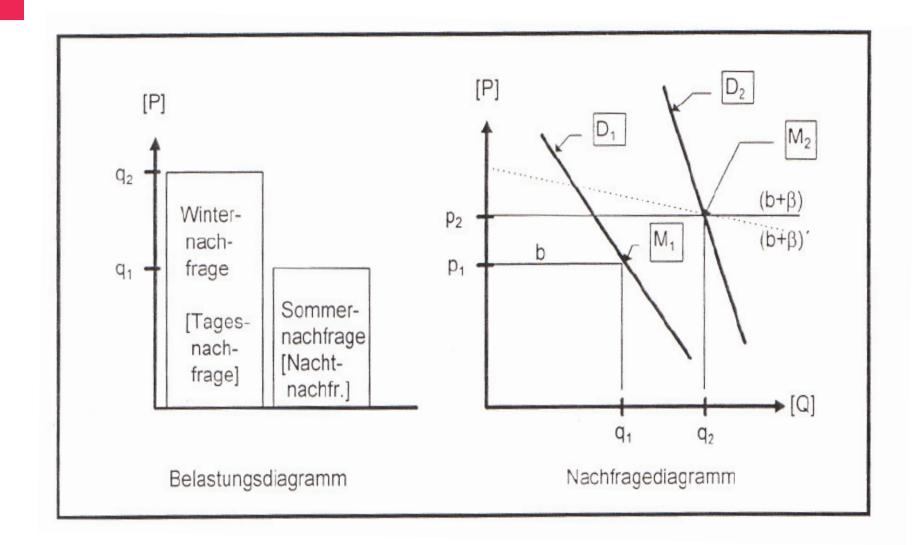


# PROBLEMSTELLUNGEN DES WOHLFAHRTSÖKONOMISCHEN MARKTKONZEPTS IN DER ELEKTRIZITÄTSWIRTSCHAFT

Heinz Stigler, Udo Bachhiesl Technische Universität Graz




13. Energieinnovationssymposium

Graz, 13.2.2014

## Kostenfunktion der Neoklassik





# Neoklassische Bepreisungsregel



a) Wohlfahrt der Schwachlastperiode

$$W_1 = \int_{0}^{q_1} [p_1(q_1) * dq_1] - b * q_1$$

b) Wohlfahrt der Starklastperiode (inklusive Kapazitätskosten)

$$W_2 = \int_{0}^{q_2} [p_2(q_2) * dq_2] - b * q_2 - \beta * q_2$$

$$\partial W / \partial q_1 = p_1 - b = 0$$

$$\partial W / \partial q_2 = p_2 - (b + \beta) = 0$$

Hieraus ergeben sich als optimale Preise für die

Starklastperiode:  $p_2 = b + \beta$ Schwachlastperiode:  $p_1 = b$ 

**Gebrauchs**anweisung!

# Problemstellungen der Neoklassik für ElWi



- verwendeter vwl. Kostenbegriff wenig definiert
- "Höchstlastzeit" (pro Jahr; eher Zeitraum)
- Unternehmen unterliegen AktG
- Langlebigkeit der Anlagen (+ Invest.-sicherheit)
- stagnierende / expandierende Gesamtkapazität
- "Lebensläufe" der Kraftwerke im System
- lange Zeiträume (Preissignale, Marcchetti)
- Nachfrageseite (Elastizität = Adapabilität)

# Ermittlung von realitätsnahen Kapazitätskosten



- kurz-, mittel-, langfristig erforderlich (wg. Preissignalen)
- Unternehmen unterliegen AktG
  - "historisches Anschaffungswertprinzip"
  - Zinszahlungen von [AW abzgl. Abschreibungen]
- Durchschnittsalter des Kraftwerksparks
  - aktuelle, heutige Gegebenheiten im "klassischen" System
  - Aufbau neuer Kapazitäten (Erneuerbare Energien)
    - Marcchetti-Kurven
- "Lebensläufe" der Kraftwerke im System
- stagnierende Kapazität
- expandierende Kapazität

# GuV-Rechnungen 2014-2035 größte Unternehmen



Jahr+n Jahr+2 Jahr+1

## Aufwendungen

## Erträge/Erlöse

## **Abschreibungen**

aus KW-Park berechnet

#### FK-Zinsen

FK(1.Jan.) \* FK-Zinssatz

#### Personal + Administration

aus GuV (realer JA) übernommen

#### **Brennstoff + Betriebsstoffe**

aus Kraftwerkseinsatz

Stromzukauf aus Deckungsrechng.

MCP \* (Eigenbedarf - Erzeugung)

#### Aufwand aus CO<sub>2</sub>-Zertifikaten

CO<sub>2</sub>-Ausstoß \* EZ-Preis

Gewinn = EK(1.Jan.) \* EK-Zinssatz

#### Stromerlöse (End)kunden

wird "angepasst" um den geforderten Gewinn zu erzielen:

- =  $\Sigma$ Aufwend. + Gewinn
  - Erlöse(Großhandel) Erträge(CO2)

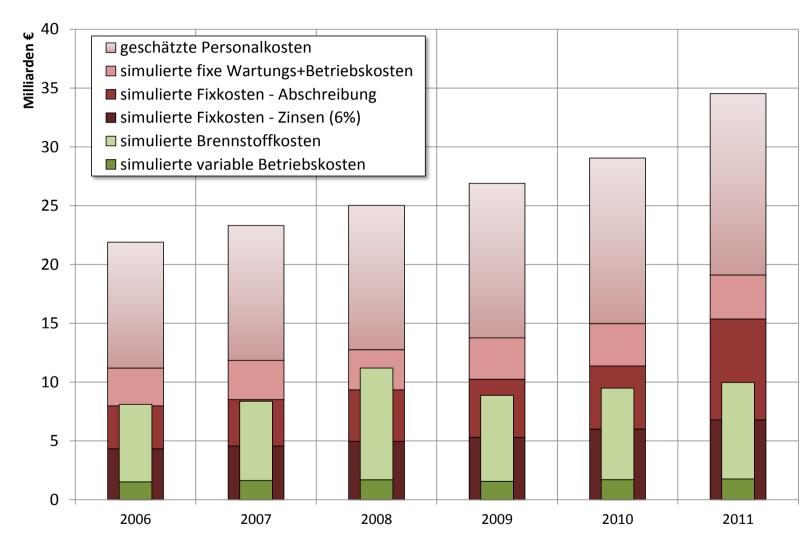
in weiterer Folge:

Erlöse(Kunden) / gelieferte Arbeit

- = erf. Mindeststrompreis [€/MWh]
- ⇒ "Eigenwirtschaftlichkeit"

#### Stromerlöse Großhandel

aus Deckungsrechnung


MCP \* (Erzeugung - Eigenbedarf)

## Erträge aus CO<sub>2</sub>-Zuteilung

Allokation \* EZ-Preis

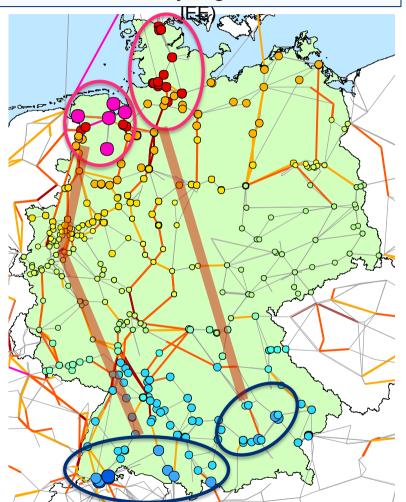
## Relation fixe zu variable Kosten im Elektrizi-tätssystem



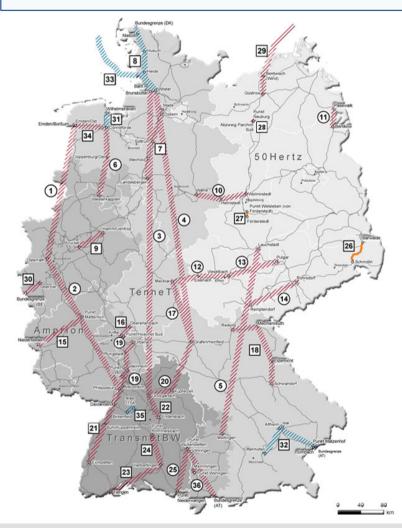


Qu.: Diss. Schüppel

# Dargebotsabhängigkeit vs. Bedarfsgerechtigkeit




- dargebotsabhängige Erzeugung (Zeit, Ort)
- bedarfsgerechte Erzeugung
- "gerichteter Stromtransport"
- "fixer" Verbrauch
- "flexibler(er)" Verbrauch


# Qualität und Ort der zuzubauenden Kraftwerkskapazität



## results of the node-sensitivity algorithm (Nischler

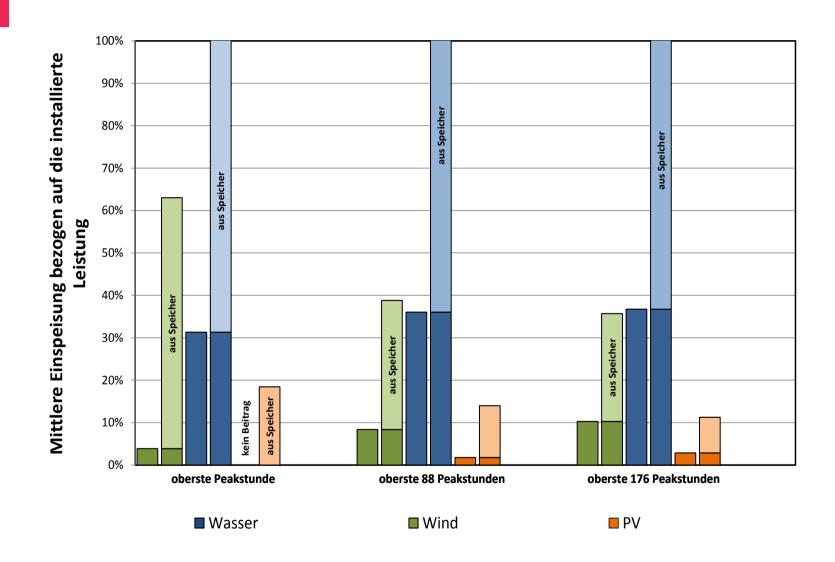


## results of the German TSOs for the NEP 2012



## Fixkostentragung für Kraftwerke erneuerbarer Energien

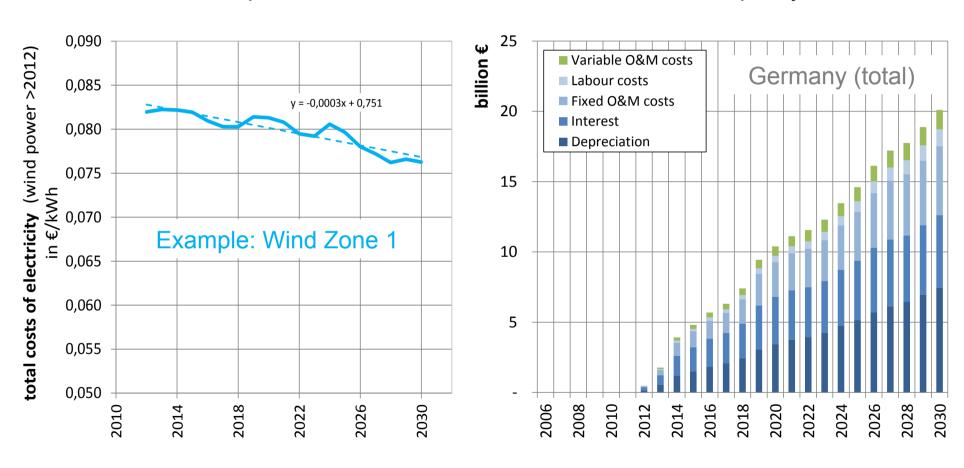



Grundsätzliche Problemstellung bis 2100 + !

irgendwann werden wir die gesamte Energie beziehen aus

- erneuerbaren Energien
- Kernenergie
- Geothermie
- "Planetenbewegung"
- haben durchwegs überwiegend nur Fixkosten
- Ausbaugeschwindigkeit (AW-Prinzip, Marcchetti)
- Kapazitätsbeitrag EE und Pumpspeicherung (Diss. Nacht)
- Nutzen für das übrige System **Opportunitätskosten** (Diss. Schüppel)

# Kapazitätsbeitrag EE mittels PSP (Diss. Nacht)






# First Simulation Results II (Diss. Schüppel)



## Development of total costs with 116 GW additional capacity



# Richtige steuernde Preissignale für Stromnachfrage(r)

- kurz-, mittel- und langfristige (LRMC) Preissignale
- große Verbraucher weniger problematisch
- Verhältnis zwischen großen und kleinen Verbrauchern
- "standardisierte" Verbraucher
  - zwischen Gruppen
  - innerhalb einer Gruppe
  - aktuell und im Zeitverlauf!
- "smart metering" → Zielrichtung?



# Vielen Dank für Ihre Aufmerksamkeit!

WISSEN - TECHNIK - LEIDENSCHAFT





