## Specification and Assessment of Electric Energy Storage Systems based on Generic Storage Load Profile



Dipl.-Ing. Hendrik Schaede

Maximilian Schneider, M.Sc.

Prof. Dr.-Ing. Stephan Rinderknecht



### **Agenda**



- Motivation
- SDA-Methodology
- Specification Process
- Application Example: Industrian Plant
- Discussion and Conclusion



### **Motivation**









- Rapid increase of renewable energies in the grid
- Renewable energies are highly volatile
- Energy consumption is hard to predict

Electical Energy Storage Systems (EESS) serve as intermediates between consumption and renewable production



#### **Motivation**



- Depending on task different storage types and properties are necessary:
  - Type of storage technology
  - Capacity
  - Maximum charge and discharge power
  - Cycle-life and energetic losses
- Decisions are crucial for the profitability of the energy storage system
  - Properties of the energy storage system must be thoroughly determined
  - No general methods availabe for this task



### **SDA-Methodology**



### **Object:**

Find the optimal energy storage system for the application

### **Challenge:**

- No methodologies
- Documented procedures for specific applications

### Approach:

- Development of a technologically neutral process
- Analysis of the Process
- Definition of four standardized steps:
  - 1. Specification
  - 2. Design
  - 3. Assessment
  - 4. Optimisation





### **SDA-Methodology**







### **Specification Process**





### 'Specification':

- In-depth analysis of the field of application
- Identification of storage operator needs
- Assumption of ideal storage

### **Results from 'Specification':**

- Nominal electrical power
- Usable storage capacity
- Goals for the 'Design' process
  - Efficiencies
  - Cycle life
  - Safety
  - Total costs
  - Specific energy and power densities

Criteria also basis for the 'Assessment' and 'Optimization'

## Application load profile





### Generating an application load profile





# **Application Example: Industrian Plant**Synthesis of gernic application load profile



Aim of the EESS: smoothen the load profile

### **Determination of ideal Generic Load Profile with**

**EESS:** zero-phase digital low-pass filter







Synthesis of gerenic application load profile



Calculation of the generic storage profile (unbalanced):

$$P \downarrow st, gen, ub = P \downarrow load, gen - P \downarrow app$$

 $E \downarrow st(\tau) = \sum t = 1 \uparrow \tau # P \downarrow t \cdot \Delta t$ 









# **Application Example: Industrian Plant**Operational Strategy



application of EESS

load profile (measurement or simulation)

Synthesis of

load profile

Generic storage

(unbalanced)

Synthesis of balanced storage profile

neric application

- Operational strategy is necessary to balance the EESS
- Power and SoC controller parameters must be set



Source Schneider, M., Boras, P., Schaede, H., Quurck, L., Rinderknecht, S.; Effects of Operational Strategies on Performance and Costs of Electric Energy Storage Systems; In: Energy Procedia, Vol. 46, 2014, pp. 271-280.



### Synthesis of balanced storage profile









## **Analysis and Specification**







**Analysis and Specification** 





## **Analysis and Specification**



Additional information can be gained from the balanced storage profile:

|                                                        | Per Profile | Per Year       |
|--------------------------------------------------------|-------------|----------------|
|                                                        | (≈8 h)      | (200 workdays) |
| Power ramp rate                                        | 71.8 kW/s   | 71.8 kW/s      |
| Number of load reversals                               | 17,415      | 3,483,000      |
| Number of load cycles<br>(100% DoD and 100 % Capacity) | 10.7        | 2,133          |



#### **Discussion and Conclusion**



- Sizing of EESS is important
- No standardized methods available
- SDA Methodology as overall approach to size, design and optimize energy storage systems
- Specification process allows for technology neutral definition of requirements
- Detailed information about the field of application necessary
- Consideration of losses later in the process can affect the storage performance
- Uncertainties should be integrated into the procedure





## Thank you very much for your attention!

Maximilian Schneider schneider@ims.tu-darmstadt.de

