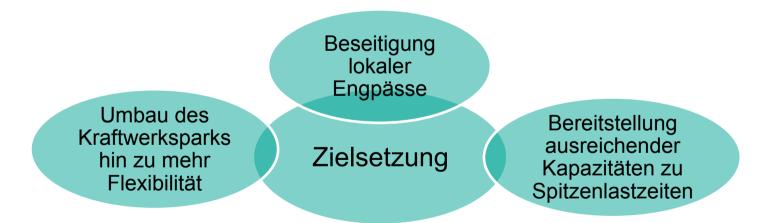


Modellgestützte Analyse von Designoptionen für den deutschen Elektrizitätsmarkt zur Gewährleistung der Versorgungssicherheit bei zunehmender Stromerzeugung aus erneuerbaren Energien

<u>Lea Renz</u>, Dr. Dogan Keles, Prof. Dr. Wolf Fichtner 13. Symposium Energieinnovation, TU Graz, 13.02.2014

INSTITUT FÜR INDUSTRIEBETRIEBSLEHRE UND INDUSTRIELLE PRODUKTION (IIP) Lehrstuhl für Energiewirtschaft (Prof. Fichtner)


Agenda Karlsruher Institut für Technologie

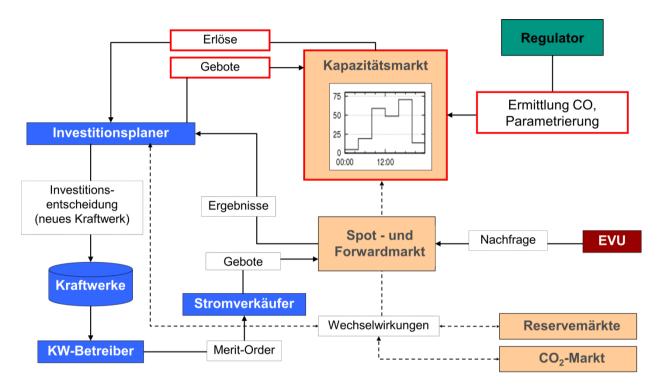
- Hintergrund und Motivation
- Methodischer Ansatz
 - Auswahl der analysierten Strommarktdesignoptionen
 - Modellüberblick
 - Simulation eines zentralen Kapazitätsmarkts
- Daten
- Ausgewählte Ergebnisse
- Schlussfolgerungen und Ausblick

Hintergrund und Motivation

- Derzeit intensive Diskussion über die zeitnahe Einführung eines Kapazitätsmechanismus in Deutschland Grund: Sorge um Versorgungssicherheit
- Aber: bisher noch nicht zweifelsfrei widerlegt, dass der Energy-Only-Markt ausreichend Investitionsanreize setzt
- Unklarheit bezüglich der konkreten Ausgestaltung eines Kapazitätsmechanismus

Lea Renz- Modellgestützte Analyse von Designoptionen für den

deutschen Flektrizitätsmarkt


Methodischer Ansatz

- Identifikation der für den deutschen Strommarkt relevanten Marktdesignoptionen
 - Referenz: Energy-Only-Markt (EOM)
 - Zentraler Kapazitätsmarkt/Kapazitätsoptionen
 - Strategische Reserve
 - Dezentraler Kapazitätsmarkt
- Implementierung des Mechanismus der Kapazitätsoptionen in das agentenbasierte Simulationsmodell PowerACE
- Untersuchungszeitraum 2010-2050, Annahme eines verstärkten Ausbaus der erneuerbaren Energien
- Umfassende Analyse des Kapazitätsmechanismus im Hinblick auf die Entwicklung von Erzeugungskapazitäten, Strompreisen und CO₂-Emissionen und Vergleich mit EOM
 - → Zentrale Frage: Unterdeckung der Nachfrage möglich?

Modellüberblick PowerACE

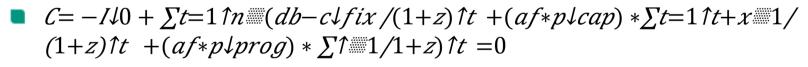
- Vier Module: Märkte, Stromversorgung, Stromnachfrage, Regulierung
- Bildet den deutschen Strommarkt kraftwerksscharf und stündlich aufgelöst ab

Lea Renz- Modellgestützte Analyse von Designoptionen für den

deutschen Flektrizitätsmarkt

 Ausgangspunkt für Investitionsentscheidungen im Modell ist die Wirtschaftlichkeitsberechnung auf Grundlage des simulierten Kraftwerkseinsatzes vorgegebener konventioneller Technologieoptionen

Simulation eines zentralen Kapazitätsmarkts



- Schritt 1: Regulator
 - Bestimmung des konventionellen Kapazitätsbedarfs ConCap: $ConCap \downarrow t + x = (1 + R \downarrow t + x) * (D \downarrow peak, t + x EE \downarrow t + x Imp \downarrow t + x)$
 - Bestimmung der von jedem EVU benötigten Leistung (Capacity Obligation CO): $CO\downarrow t+x=share \downarrow peak*ConCap \downarrow t+x$
 - Berechnung der Peak Energy Rent: Deckungsbeitrag einer Referenzgasturbine; wird jedes Jahr von Kapazitätserlösen abgezogen
- Schritt 2: EVU
 - Erstellung von Angeboten für die Kapazitätsauktion
- Schritt 3: Kapazitätsauktion
 - Descending Clock Auction
 - Floor- und Startpreis orientieren sich an den Cost of New Entry (CONE) einer Referenzgasturbine

Angebotserstellung des Investitionsagenten

- Drei unterschiedliche Angebotstypen
 - OfferSelf: bestehende Kapazität, wird zur Erfüllung der CO genutzt → Angebotspreis: 0 €/kW
 - OfferExistent: bestehende Kapazität, die nach Erfüllung der CO im Überschuss vorhanden ist → Angebotspreis: 0 €/kW
 - OfferNew: Neubauten.
 - → beliebiger Angebotspreis innerhalb Floor- und Startpreis
- Bestimmung des Kapazitätspreis für Neubauprojekte

Bisher höchster Kapitalwert

y Jahre fixer Preis

Lea Renz- Modellgestützte Analyse von Designoptionen für den

deutschen Elektrizitätsmarkt

z Jahre prognostizierter **Preis**

Datengrundlage und Parametrierung

- Untersuchungszeitraum: 2010-2050
- Wesentliche Modellinputparameter
 - Kraftwerksliste der Bundesnetzagentur
 - CO₂- und Brennstoffpreise aus verschiedenen Quellen
 - Stromimporte und exporte konstant auf Niveau von 2010
 - Annahme eines verstärkten Ausbaus der erneuerbaren Energien
 - Annahme einer steigenden Stromnachfrage
- Parametrierung des Kapazitätsmechanismus

Reservemarge: 8%

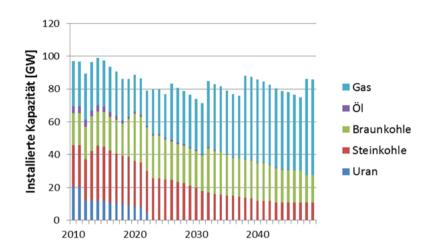
CONE: 400 €/kW

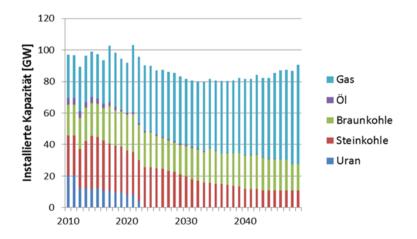
Floorpreis: 0,6*CONE, Startpreis: 2*CONE, Vorlaufzeit: 4 Jahre

Lea Renz- Modellgestützte Analyse von Designoptionen für den

deutschen Flektrizitätsmarkt

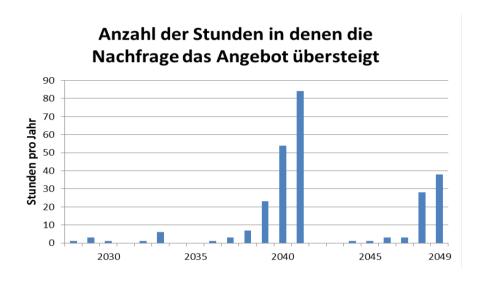
Neuanlagen erhalten Kapazitätszahlungen für 10 Jahre

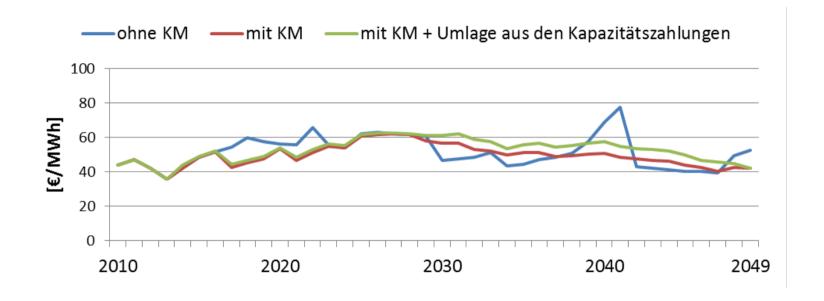

Ausgewählte Ergebnisse (1)



- Die Investitionstätigkeit im EOM ist stark von Zyklen geprägt
- Mit Kapazitätsmarkt wird früher und insgesamt gleichmäßiger investiert
- Mit Kapazitätsmarkt werden bis zum Jahr 2050 kumuliert ca.
 15 GW mehr Erdgaskraftwerke installiert
 - → verstärkte Investition in flexible Kraftwerkskapazität

Lea Renz- Modellgestützte Analyse von Designoptionen für den


deutschen Elektrizitätsmarkt



- Unterdeckungen der Nachfrage im EOM ab 2018 möglich
- Höhepunkt der Marktknappheit 2041 erreicht
- Mit Kapazitätsmarkt wird investiert bevor es zu größerer Marktknappheit kommt
 - → Versorgungssicherheit gewährleistet, aber Aufbau von Überkapazitäten möglich

Ausgewählte Ergebnisse (3)

- Die durchschnittlichen Großhandelsstrompreise liegen im EOM überwiegend unter denjenigen mit Kapazitätsmarkt
- Allerdings steigt der durchschnittliche Großhandelspreis im EOM bei Kapazitätsknappheit in den Jahren 2017-2022 sowie 2040 und 2041 deutlich stärker an als mit Kapazitätsmarkt

Lea Renz- Modellgestützte Analyse von Designoptionen für den

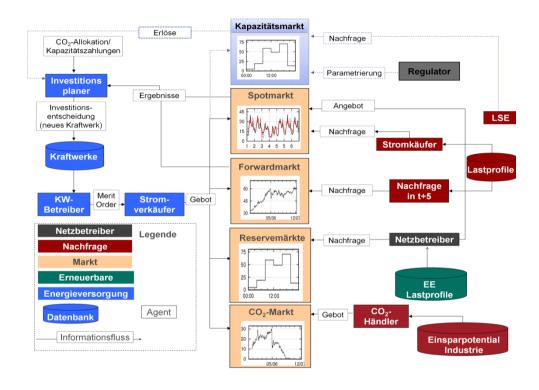
deutschen Elektrizitätsmarkt

Schlussfolgerungen

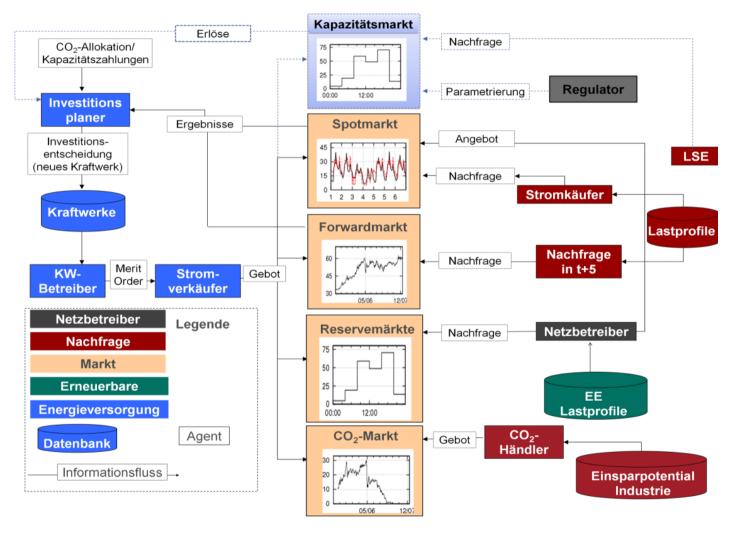
- Unterschiede zwischen EOM und Kapazitätsmarkt in der Entwicklung konventioneller Kraftwerkskapazität in Quantität und Qualität
- EOM kann unter der Annahme eines verstärkten Ausbaus der erneuerbaren Energien und einer steigende Stromnachfrage nicht die notwendige Versorgungssicherheit garantieren
- Kapazitätsmechanismus wird bei adäquater Parametrierung
 Anforderungen zur Sicherstellung der Versorgungssicherheit gerecht
 → Aber: Mit Kapazitätsmarkt Aufbau von Überkapazitäten möglich
- Außer in Jahren mit Kapazitätsknappheit liegen die durchschnittlichen Großhandelsstrompreise im EOM unterhalb denen mit Kapazitätsmarkt

Ausblick

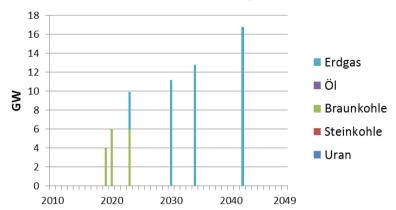
- Implementierung weiterer Kapazitätsmechanismen in das PowerACE-Modell
- Berücksichtigung unterschiedlicher adäquater Parametrierungen und Simulation verschiedener Szenarien
- Abbildung nachfrageseitiger Flexibilitäten, die ebenfalls am Kapazitätsmarkt teilnehmen, bzw. im EOM Marktversagen vermeiden können
- Umfassender Vergleich der einzelnen Marktdesigns
- → Beitrag zur Bewertung zukünftiger Designoptionen für einen deutschen Strommarkt mit hohen Anteilen an erneuerbaren Energien

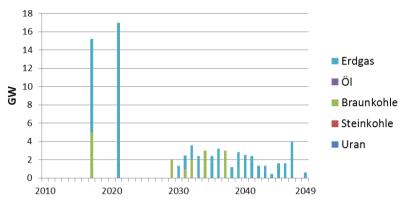

VIELEN DANK...

Backup



- Vier Module: Märkte, Stromversorgung, Stromnachfrage, Regulierung
- Bildet den deutschen Strommarkt kraftwerksscharf ab
- Wesentliche Inputparameter: Stromnachfrage, CO₂- und Brennstoffpreise, Stromimporte und exporte, Ausbau der erneuerbaren Energien




Ergebnisse

Neu installierte Leistung mit Kapazitätsmarkt

- Mit Kapazitätsmarkt wird deutlich gleichmäßiger investiert als im EOM und bevor es zu einer größeren Marktknappheit kommt
- Anreiz für Investitionstätigkeiten im EOM ist der starke Anstieg des durchschnittlichen Spotmarktpreises in Jahren mit Kapazitätsknappheit

Simulation eines zentralen Kapazitätsmarkts

Schritt1: Regulator

 $Imp\downarrow t+x$)

• Bestimmung des konventionellen Kapazitätsbedarfs ConCap:

$$ConCap \downarrow t + x = (1 + R \downarrow t + x) * (D \downarrow peak, t + x - EE \downarrow t + x - E$$

• Bestimmung der von jedem EVU benötigten Leistung (Capacity Obligation CO): $CO\downarrow t+x=sharepeakt*ConCap\downarrow t+x$

 Berechnung der Peak Energy Rent: Deckungsbeitrag einer Referenzgasturbine; wird jedes Jahr von Kapazitätserlösen abgezogen

Schritt 2:EVU

Erstellung von Angeboten für die Kapazitätsauktion

Schritt 3: Kapazitätsauktion

- Descending Clock Auction
- Start- und Floorpreis orientierten sich an Cost of New Entry (CONE) einer Referenzgasturbine

