RESTRUCTURING RENEWABLE ENERGY SOURCES FOR MORE EFFICIENT BIOFUELS PRODUCTION WITH EXTREMOPHILIC MICROORGANISMS Sébastien BERNACCHI, Bettina LORANTFY, Ester MARTINEZ, Christoph HERWIG ### Our mission and concept - Biological methanogenesis - II. Biohydrogen production - III. Biological conversion of waste streams to high value added products Conclusions Outlook towards new biofuel generations & Waste to value ### Contribution to new biofuel generations: - integrated biological systems - CO₂ neutrality - process intensification by coupling of waste streams - "Waste to value" principles: bioproducts from waste streams # Sustainable bioprocessing ### Extremophilic microoganisms Living at extreme environmental conditions: (e.g. high temperature, very alkaline conditions or high salt concentrations) # Coupling of effluent streams #### **Process intensification** 14.02.2014 5 # Sophisticated bioreactor setups Phoprocess Technology - Online process control with lucullus (PIMS) - Online monitoring of process and signals - Multi analytical methods for process quantification - GC, HPLC, ICP-OES/MS, Enzymatic/colorimetric methods on Cubian.XC and/or cedex bioHT and spectroscopic methods # Introducing biomethanogenesis Bioprocess Technology Methanation reaction: $$CO_2$$ + $4 H_2$ \rightarrow CH_4 4 x 3 kWh efficiency, 83 % max. - 130 kJ/mol Catalyst "Archaea" **Process** "Methanogenesis ("Biological Methanation") 10 kWh reduction agent! out of "food for fuel" + 2 H₂O fast "Photosynthetic Bypass" 4 th Generation Biofuels $(> 15 \text{ kg/m}^3 \text{ x h})$ ### Why Biological and not Chemical? - Operating conditions - Chemistry: T = 200 400 °C / P = 50 200 bar - Biology: T = 35 70 °C P = 1-10 bar - Chemical process form energy losses: - Heating 14.02.2014 Compression - Chemistry need high purity feed stocks - Biology has strategies to extract nutrients from gas mixtures Biology makes from mixtures 1 product, Chemistry makes from pure components mixtures! ### Biomethanogenesis - Is a simple bioprocess running under gas transfer limitation - Allows in a single step to produce from H₂/CO₂ mixtures an high quality CH₄ under mild conditions - The concept of power to gas originated from storing renewable electricity peaks into the form of natural gas - How would an ideal response look? # Single step biogas upgrade to bioCH₄ Bioprocess - Use of H₂S and CO₂ contained in biogas as raw materials for biomethanogenesis - Efficient way of upgrading any kind of waste gas containing CO₂ (incineration gas, biogas etc.) and H₂ (syngas, waste streams etc.) into natural gas # Biohydrogen production ### H₂ production | Process | C-Source | Energy-Source | |-------------------|-----------------|---------------| | Dark Fermentation | Sugars | Sugars | | Photofermentation | Organic acids | Light | | Photosynthesis | CO ₂ | Light | - BM (Extract): Xylose from the hemicellulose - BM2: Caldicellulosiruptor saccharolyticus (strictly anaerobic asporogenous thermophilic Gram-positive bacterium) ### Biohydrogen production To increase biohydrogen productivities and yields on xylose by the strain C. saccharolyticus - Screening in serum flasks - Batch and Continuous runs in a bioreactor - Verification of new medium components | | | C. saccharolyticus ⁽¹⁾ | |-------------------|-------|-----------------------------------| | Temperature | [°C] | 72.5 | | рН | [-] | 6.7 | | N ₂ in | [L/h] | 7.0 | | Agitator speed | [rpm] | 150 / 350 | #### Parameters: T= cte. pH ≈ cte. Agitator speed = 0 rpm Tangential Cross Flow rate (TCFR) X Cellular stress # Medium optimization in biohydrogen Bioprocess Technology production systems 10 - Biohydrogen production on xylose by *C. saccharolyticus*: - Batch cultures: - \circ HER, q_{H2} and Y(H_2/s): Complex medium > Defined medium - \circ Y_(H2/CO2): Complex medium = Defined medium - Continuous culture: - C-limiting conditions at D< 0.1 h⁻¹ $$\circ$$ HER_{max}, $q_{H2max} => D=0.1 h^{-1}$ - Double C-N-limitation on continuous mode: - \circ NH₄⁺ < 1.5 mM, if working with a defined medium in chemostat mode. - \circ N-limitation => q_{H2} # Cell retention in biohydrogen production systems ⁹ - Start-up - Continuous culture with external loop (CCEL) - Adaptation of the cells to the new growing conditions - Total cell retention (TCR) - Increase of the biomass concentration HER, xylose and metabolite concentrations of *C. saccharolyticus* cultivated on xylose (4.5 g/L) in a TCR system at different TCFRs - C- limiting conditions at D=0.1h⁻¹ for TCFR≤0.04 L/min/m² - HER increase at simultaneous increasing D and TCFR - **×** HER_{TCR} ≈ HER_{Conti} - No biomass increase - No cell lysis - Cellular stress ⁽¹⁾ Martinez-Porqueras E, Herwig C. Quantitative assessment of key physiological parameters of the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus grown in an external cell retention systems. Renewable Energy (under review). # "Waste to value" with Halophiles Fioprocess Halophiles can generate extra values on diverse industrial waste streams **Use of wide variety of carbon sources**: organic acids, diverse sugars, the sugar alcohol glycerol, aromatic compounds, etc. **Production of valuable bioproducts** like carotenoids or biopolymers (PHA/PHB), recombinant products - quantitative bioprocessing technology - on defined medium - salt has to be added to the waste stream in a corrosion resistant bioreactor - the non-sterile process can be implemented in any industrial environment - easy downstreaming of intracellular products, as disruption of cells can happen automatically in water due to osmotic shock - scalability given through defined medium und the use of bioreactor with controlled and defined cultivation conditions # Technology - overview # Physiological characterization studies Bioprocess Technology - corrosion resistant bioreactor setup for extreme halophiles - quantitative data on stoichiometry and the kinetics on different carbon sources - process parameter optimization - used carbon sources: they are common residues in industrial waste streams # Halophilic bioproducts #### Carotenoids Potential applications: food colorant, dietary supplement, anticancer material Biopolymers: Poly-hydroxy-alkanoates Potential applications: biodegradable thermopolyester or #### Recombinant products Potential applications: biopharmaceutical, therapeutic proteins, etc. - High biological activity and volumetric productivity - the produced biomass is retained in a bioreactor - Characterization of an external cell retention system - 10-fold productivity increase # Real-medium applications # benefits of controlled bioprocessing with extreme Halophiles: - pending patent application of TU Wien - the use of Halophiles - for biological conversion of the waste stream from biohydrogen production with small metabolites - potential biotechnological applications with Halophiles - wide ranges of intelligent process intensification solutions "waste to value" - valuable bioproduct production with halophilic microorganisms - on any kinds of waste streams with organic content ### Conclusions New biofuel generations & Restructuring the renewable energy sources Process intensification by coupling of effluent streams: Biorefinery concept & "Waste to value" sustainable biofuel production systems Cost-effective & non-sterile bioprocesses with Extremophiles Intelligent and flexible solutions for energy storage, "Power to gas" with biomethanogenesis microalgae from the 3rd biofuel generation integrate as alternative renewable substrate source for biofuels production # Thank you for your attention!