

Georg Lettner

Energy Economics Group (EEG) Vienna University of Technology lettner@eeg.tuwien.ac.at

WETTBEWERBSFÄHIGKEIT DER PHOTOVOLTAIK FÜR UNTERSCHIEDLICHE NETZKOSTEN- UND ABGABENBEITRÄGE DES EIGENVERBRAUCHES

13. Symposium Energieinnovation 12.-14.2.2014 TU Graz

INHALT

- Roadmap PV Wettbewerbsfähigkeit in Europa
 - Dynamischer Modellierungsansatz PV Wettbewerbsfähigkeit
 - Monte Carlo Simulation der Parameter PV Wettbewerbsfähigkeit für Haushalte in Österreich
 - Roadmap der PV Wettbewerbsfähigkeit für Haushalte in Europa
 - MITHRAS Simulationstool für PV Wettbewerbsfähigkeit
- Sensitivitätsanalyse unterschiedlicher Netzkosten- und Abgabenbeiträge des Eigenverbrauchs
 - Österreich
 - Deutschland
- Schlussfolgerungen

MODELLIERUNGSANSATZ DER DYNAMISCHEN PV WETTBEWERBSFÄHIGKEIT FÜR HAUSHALT

Dynamisch bedeutet in diesem Zusammenhang, dass ein wirtschaftlicher Vergleich der Kostenbarwerte und der Einnahmen über die ganze Lebensdauer eines PV-Systems erfolgt.

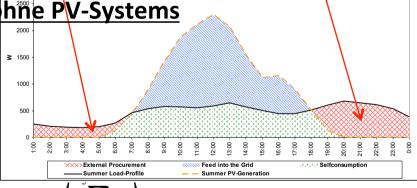
Haushalt/Gewerbe: jährliche Kosten mit PV-Systems

$$\begin{split} NPV \ of \ C_{withPV,year} &= p_{\text{Re}tail,year} \cdot \left(Demand_{year} - Self consumption_{year}\right) + \\ &+ \left(LCOE_{PV,year} - p_{Market,year}\right) \cdot Feedin_{year} + \\ &+ LCOE_{PV,year} \cdot Self consumption_{year} \end{split}$$

Haushalt/Gewerbe: jährliche Kosten ohne PV-Systems

$$NPV \ of \ C_{withoutPV,year} = p_{Retail,year} \cdot Demand_{year}$$

Trade Off:
$$\left(\sum_{y \in ar=1}^{lifetime} NPV \ of \ C_{withPV,year} \le \left(\sum_{y \in ar=1}^{lifetime} NPV \ of \ C_{withoutPV,year} \right)$$



Haushalt/Gewerbe: jährliche Kosten mit PV-Systems

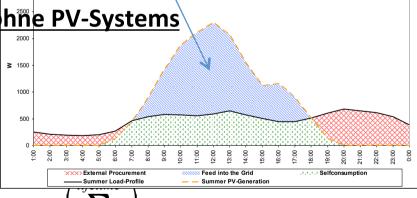
$$NPV \ of \ C_{withPV,year} = p_{\text{Re} tail,year} \cdot \left(Demand_{year} - Self consumption_{year}\right) + \\ + \left(LCOE_{PV,year} - p_{Market,year}\right) \cdot Feedin_{year} + \\ + LCOE_{PV,year} \cdot Self consumption$$

Haushalt/Gewerbe : jährliche Kosten ohne PV-Systems

$$NPV \ of \ C_{withoutPV,year} = p_{Retail,year} \cdot Demand_{year}$$

Trade Off:

$$\left(\sum_{y \in ar=1}^{lifetime}\right) NPV \ of \ C_{withPV,year} \leq \left(\sum_{y \in ar=1}^{log}\right) NPV \ of \ C_{withoutPV,year}$$



Haushalt/Gewerbe: jährliche Kosten mit PV-Systems

$$NPV \ of \ C_{withPV,year} = p_{\text{Re}tail_year} \cdot \left(Demand_{year} - Selfconsumption_{year}\right) + \\ + \left(LCOE_{PV,year} - p_{Market,year}\right) \cdot Feedin_{year} + \\ + LCOE_{PV,year} \cdot Selfconsumption_{year}$$

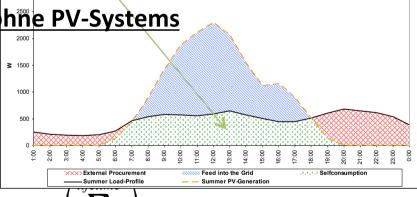
Haushalt/Gewerbe: jährliche Kosten ohne PV-Systems

$$NPV \ of \ C_{withoutPV,year} = p_{Retail,year} \cdot Demand_{year}$$

Household: Load Profile versus PV-Generation Profile for a typical Summer Day in Vienna

Trade Off:

$$\left(\sum_{y \in ar=1}^{lifetime}\right) NPV \ of \ C_{withPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right) NPV \ of \ C_{withoutPV,year} \leq \left(\sum_{y \in ar=1}^{summer Load Profile}\right)$$



Haushalt/Gewerbe: jährliche Kosten mit PV-Systems

$$NPV \ of \ C_{withPV,year} = p_{\text{Re}tail,year} \cdot \left(Demand_{year} - Selfconsumption_{year}\right) + \\ + \left(LCOE_{PV,year} - p_{Market,year}\right) \cdot Feedin_{year} + \\ + LCOE_{PV,year} \cdot Selfconsumption_{year}$$

Haushalt/Gewerbe : jährliche Kosten ohne PV-Systems

$$NPV \ of \ C_{withoutPV,year} = p_{Retail,year} \cdot Demand_{year}$$

versus PV-Generation Profile for a typical Summer Day in Vienna

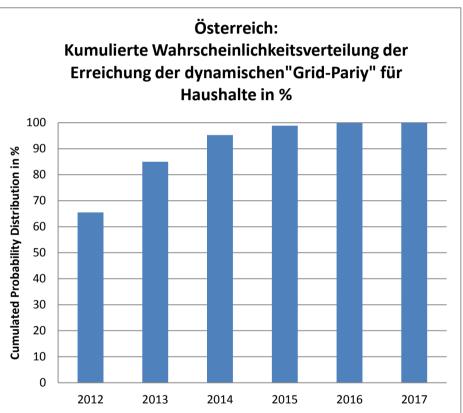
Trade Off:

$$\left(\sum_{y ear=1}^{lifetime}\right) NPV \ of \ C_{withPV,year} \leq \left(\sum_{y ear=1}^{-\text{Summer PV-Generation}}\right) NPV \ of \ C_{withoutPV,year}$$

Haushalt/Gewerbe: jährliche Kosten mit PV-Systems

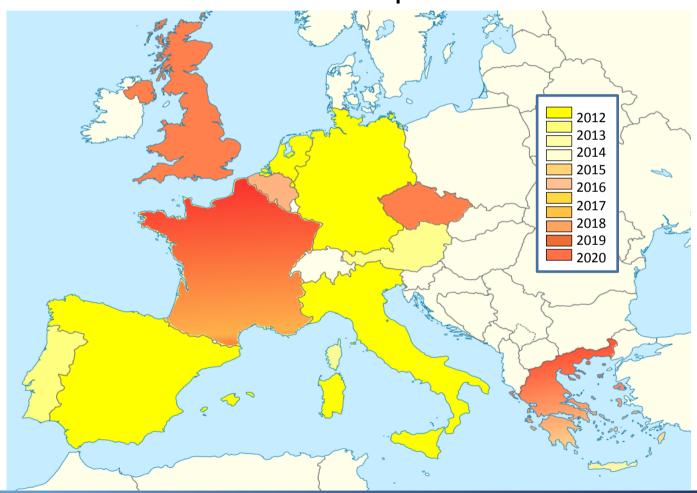
$$\begin{split} NPV \ of \ C_{withPV,year} &= p_{\text{Re}\textit{tail},year} \cdot \left(Demand_{year} - Selfconsumption_{year}\right) + \\ &+ \left(LCOE_{PV,year} - p_{Market,year}\right) \cdot Feedin_{year} + \\ &+ LCOE_{PV,year} \cdot Selfconsumption_{year} \end{split}$$

Haushalt/Gewerbe: jährliche Kosten ohne PV-Systems


$$NPV \ of \ C_{withoutPV, year} = p_{Retail, year} \cdot Demand_{year}$$

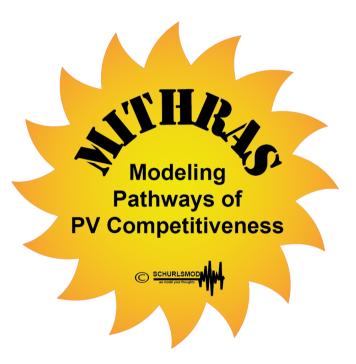
Trade Off:
$$\left(\sum_{y \in ar=1}^{lifetime} NPV \ of \ C_{withPV,year} \le \left(\sum_{y \in ar=1}^{lifetime} NPV \ of \ C_{withoutPV,year} \right)$$

ERGEBNISBEISPIEL: PV NETZPARITÄT FÜR HAUSHALTE IN ÖSTERREICH



ROADMAP DER PV WETTBEWERBSFÄHIGKEIT - HAUSHALT

Übersicht der Erreichung der PV Wettbewerbsfähigkeit für Haushalte in unterschiedlichen europäischen Ländern



MITHRAS - SIMULATIONSTOOL

www.pvparity.eu

http://www.pvparity.eu/de/results/pv-competitiveness/

MITHRAS - SIMULATIONSTOOL

Öffentliche Version:

- Barwertbasierte wirtschaftliche "Trade Off"-Analyse der PV-Erzeugung für verschiedene Markteinehmer (Haushalte, Gewerbe, Freiflächenanlagen, Insellösungen)
- Solarstrahlungs- und Lastprofile in 15min-Auflösung (standardisiert, gemessen)
- Alle Parameter editierbar (maßgeschneiderte Analyse inkl. möglichen Sensitivitätsanalysen)

Interne Version (zusätzlich):

- Monte-Carlo-Simulation aller Parameter (Mittelwert + Standardabweichung)
- Optimierung der PV-Anlagengröße nach unterschiedlichen Kriterien/ Einschränkungen (z.B. Maximierung Eigenverbrauch, wirtschaftliche Vorteile, etc.)
- Gebäudeintegrierte PV-Systeme

ANALYSE VON MÖGLICHEN KOSTEN-ERSATZMODELLEN: ÖSTERREICH

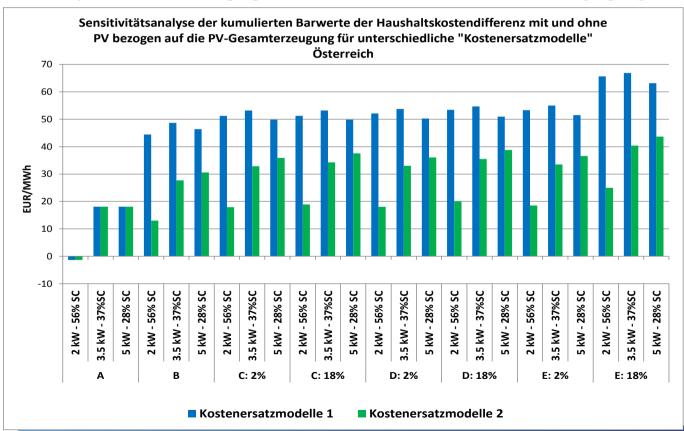
A: Eigenverbrauch ohne Beitrag zu Netzkosten und Abgaben

B: Eigenverbrauch mit Netzkosten und allg. Abgaben ohne Ökostromabgabe

C: Eigenverbrauch mit Netzkosten und Abgaben

D: wie C + Netzausbaukosten auf Eigenverbrauch

E: wie D + Systemkosten auf Erzeugung


A: Eigenverbrauch ohne Beitrag zu Netzkosten und Abgaben ARITY

B: Eigenverbrauch mit allg. Abgaben ohne Ökostromabgabe

C: wie B + Anschlusskosten und Netzverstärkungskosten für die Einspeisung

D: wie C + 10% der Erzeugung tragen zu Systemkosten bei

E: wie C + 50% der Erzeugung tragen zu Systemkosten bei

Osterreich ((EUR/MWh)	
Zusätzl. Kosten		System	Netz
PV Penetration level	2%	1,38	1,98
	4%	8,29	0,99
	6%	10,59	0,66
	8%	11,74	0,53
	10%	12,43	0,75
	12%	12,89	0,98
	14%	13,22	3,88
	16%	13,47	6,35
	18%	13,66	8,10

ANALYSE VON MÖGLICHEN KOSTEN-ERSATZMODELLEN: DEUTSCHLAND

A (alt): Eigenverbrauch ohne Beitrag zu Netzkosten und Abgaben

A (neu): Eigenverbrauch "nur" Beitrag zur EEG-Umlage

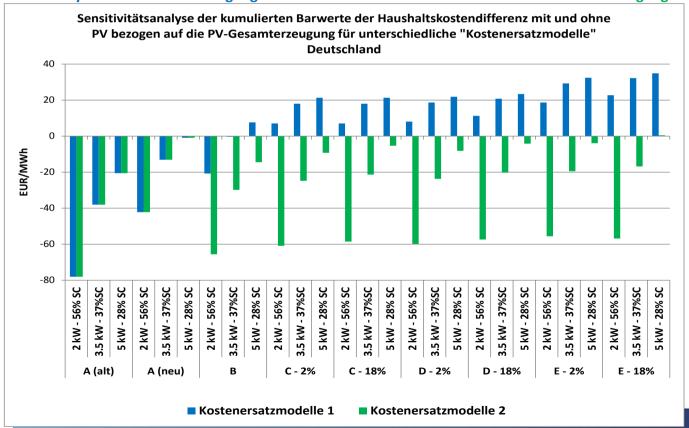
B: Eigenverbrauch mit Netzkosten und allg. Abgaben ohne EEG-Umlage

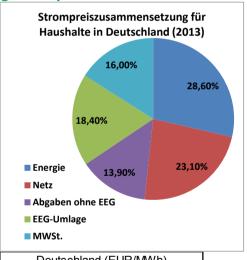
C: Eigenverbrauch mit Netzkosten und Abgaben

D: wie C + Netzausbaukosten auf Eigenverbrauch

E: wie D + Systemkosten auf Erzeugung

A (alt): Eigenverbrauch ohne Beitrag zu Netzkosten und Abgaben


A (neu): Eigenverbrauch "nur" Beitrag zur EEG-Umlage


B: Eigenverbrauch mit allg. Abgaben ohne EEG-Umlage

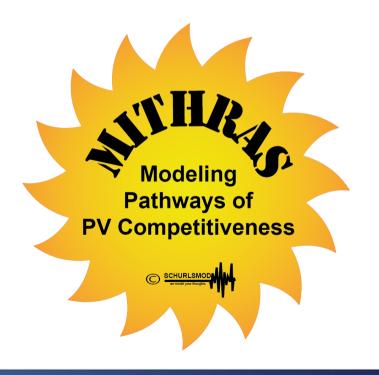
C: wie B + Anschlusskosten und Netzverstärkungskosten für die Einspeisung

D: wie C + 10% der Erzeugung tragen zu Systemkosten bei

E: wie C + 50% der Erzeugung tragen zu Systemkosten bei

Deutschland (EUR/IVIVVII)				
Zusätzl. Kosten		System	Netz	
PV Penetration level	2%	11,81	1,98	
	4%	11,81	0,99	
	6%	12,24	0,66	
	8%	12,46	0,53	
	10%	12,59	0,75	
	12%	12,68	0,98	
	14%	12,74	3,88	
	16%	12,79	6,35	
	18%	12,83	8,10	

SCHLUSSFOLGERUNGEN


- PV kann unter den derzeitigen Marktbedingungen und der Optimierung des Anteils an Eigenverbrauch der PV Stromerzeugung auch ohne Förderung als dezentrale Technologie schon wettbewerbsfähig sein.
- Wird der Eigenverbrauch mit dem gesamten Endkundenstrompreis (Energie +Netz+Abgaben/Steuern) gegengerechnet, vermindert das die Einnahmen der Netzbetreiber und des Staats/Länder/Gemeinden.
- Umwälzung dieser "Verluste" für Netzbetreiber und Staat auf die PV verzögert die Wettbewerbsfähigkeit und es Bedarf je nach der weiteren PV Systemkostensenkungen kurz- bis mittelfristig alternative Fördermodelle.
- Neue Marktdesigns und Geschäftsmodelle müssen entwickelt werden, das zusätzlich entstehende Systemkosten auch von der PV getragen werden z.B. Eigenvermarktung in Bilanzgruppen.
- In neuen Marktmodellen muss Energieeffizienz und Verbrauchsminimierung durch PV Eigenverbrauch berücksichtigt und gleichbehandelt werden.
- Eigenverbrauchsoptimierung ist wirtschaftlich und systemtechnisch eine Grundvoraussetzung für eine zukünftige hohe PV Marktdurchdringung.

EU-PROJEKT: WWW.PVPARITY.EU

Danke für die Aufmerksamkeit!

Contact:
Georg Lettner
lettner@eeg.tuwien.ac.at

