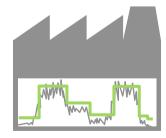

FLEXIBILISIERUNG DES STROMVERBRAUCHS IN FABRIKEN

Dennis Atabay, München


Technische Universität München, Lehrstuhl für Energiewirtschaft und Anwendungstechnik

Fabian Keller, Augsburg

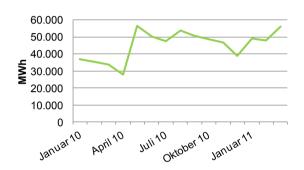
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik, Projektgruppe Ressourceneffiziente mechatronische Verarbeitungsmaschinen

Graz, 14.02.2014

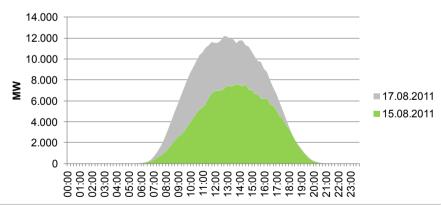
- 1. Motivation
- 2. Vorstellung FOREnergy
- 3. Energiebezugsorientierte Planung und Steuerung
- 4. Speichereinsatz in Fabriken
- 5. Zusammenfassung und Ausblick

1. Motivation

- 2. Vorstellung FOREnergy
- 3. Energiebezugsorientierte Planung und Steuerung
- 4. Speichereinsatz in Fabriken
- 5. Zusammenfassung und Ausblick



Motivation: Eingeläutete Energiewende

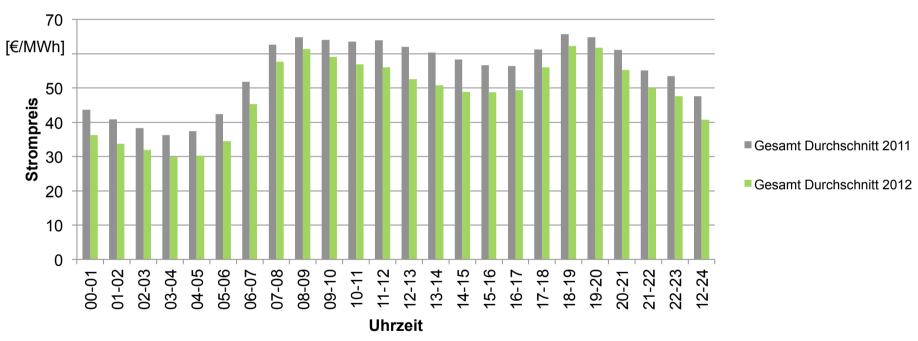


- Steigerung des Stromanteils aus erneuerbaren Energien von 23 % auf 50 % (bis 2020)
- Keine gesicherte Leistung durch die volatilen Energieträger Wind und Sonne
- Sinkende Energieversorgungssicherheit in Bayern
- Schwankende Strompreise je nach Angebot und Nachfrage

Bruttoerzeugung Windkraft, Photovoltaik, übrige regenerative Energien

Stromerzeugung aus Photovoltaik

Sinkende Versorgungssicherheit durch Ausbau von Windkraft und Photovoltaik

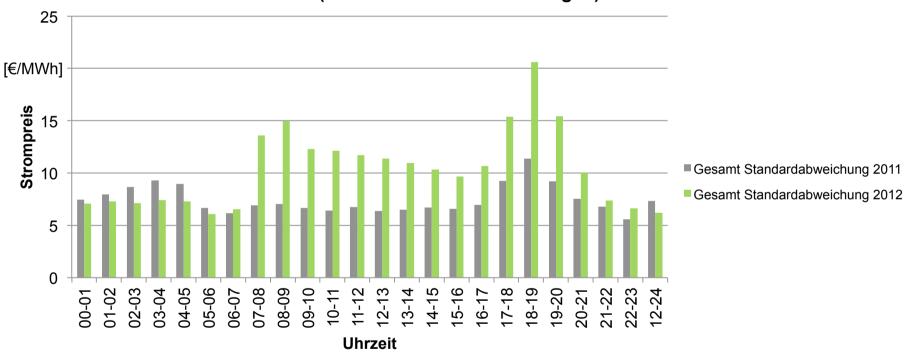


Motivation: Spotmarktanalyse I/II

Aktuelle Situation der Strompreise auf dem Spotmarkt

Durchschnittlicher Stundenpreis an Wochentagen (ohne Feier- und Brückentagen)

Die Strompreise an der EEX sind 2012 gegenüber 2011 gesunken, aber...



Motivation: Spotmarktanalyse II/II

Aktuelle Situation der Strompreise auf dem Spotmarkt

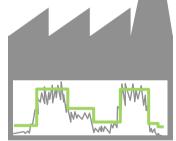
Standardabweichung der durchschnittlichen Stundenpreise an Wochentagen (ohne Feier- und Brückentagen)

...die Schwankungen der Strompreise haben deutlich zugenommen

1. Motivation

2. FOREnergy

- 3. Energiebezugsorientierte Planung und Steuerung
- 4. Speichereinsatz in Fabriken
- 5. Zusammenfassung und Ausblick


Energieflexibilität

Energieflexibilität beschreibt die Fähigkeit eines Produktionssystems, sich schnell und nur mit sehr geringem finanziellen Aufwand an kurzfristige Änderungen des Energiemarktes anzupassen.

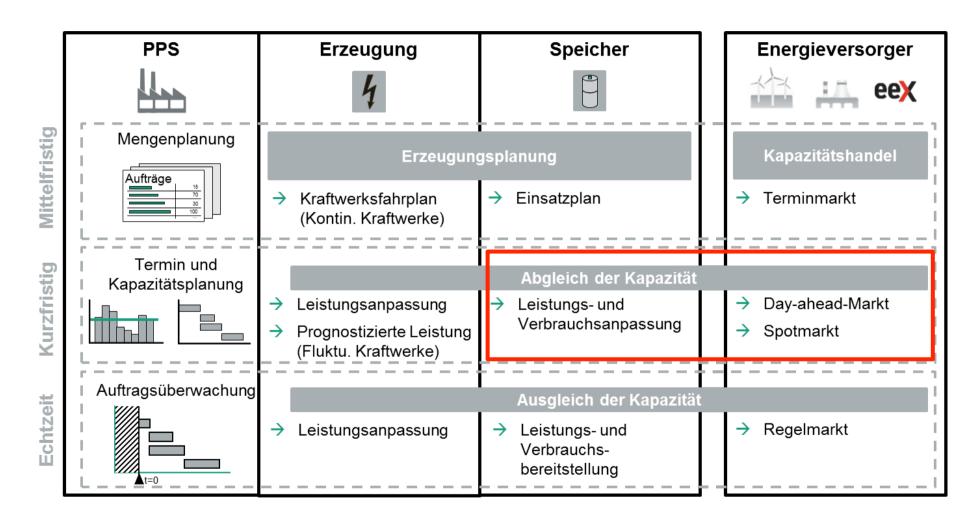
Die Energieflexible Fabrik passt sich dem Energieangebot an, durch

- energieflexible Anlagen,
- Energiespeicher und
- intelligente Steuerungen.

Die Energieflexible Fabrik ist damit ein Befähiger des Smart Grids.

Ziel des Verbunds ist die Synchronisation von Energieangebot und -nachfrage durch die Energieflexible Fabrik

- 1. Motivation
- 2. Vorstellung FOREnergy
- 3. Energiebezugsorientierte Planung und Steuerung
- 4. Speichereinsatz in Fabriken
- 5. Zusammenfassung und Ausblick



Planung und Steuerung des Strombezugs

- 1. Motivation
- 2. Vorstellung FOREnergy
- 3. Energiebezugsorientierte Planung und Steuerung
- 4. Speichereinsatz in Fabriken
- 5. Zusammenfassung und Ausblick

Speichereinsatz in Fabriken - Einführung

Strompreis =

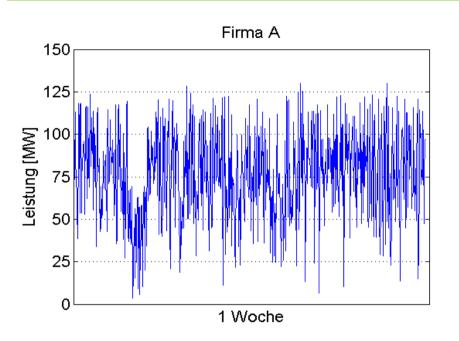
Arbeitspreis

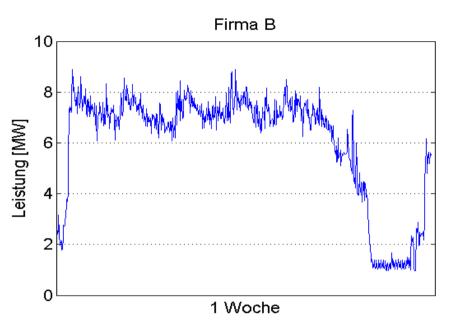
+ Leistungspreis

$$K_{Strom} = \sum_{t} (P_L(t) * \Delta t * K_{Arbeit}(t)) + \max(P_L(t)) * K_{Leistung}$$

Einsatz von Speichern:

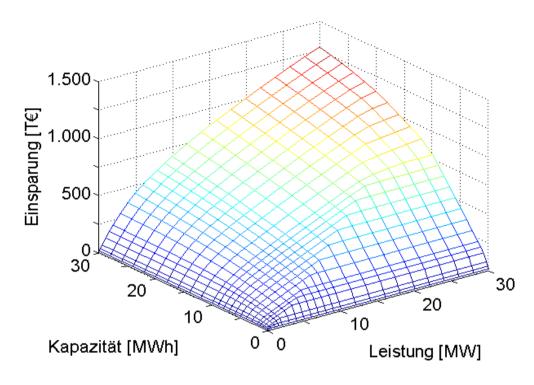
- Verschiebung der Last in "günstige" Zeiten (Variabler Stromtarif, EPEX SPOT)
- Spitzenlastreduktion





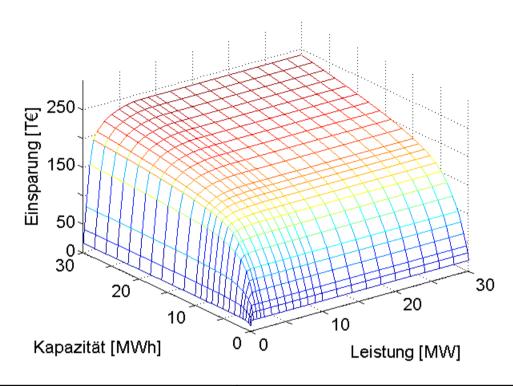
Speichereinsatz in Fabriken - Zeitreihen

Unternehmen	Jährlicher Stromverbrauch	Maximale Last	Netzanschluss	Leistungspreis
Firma A	600 GWh	130 MW	Hochspannung	28,94 €/kWa
Firma B	50 GWh	9,1 MW	Mittelspannung	68,20 €/kWa



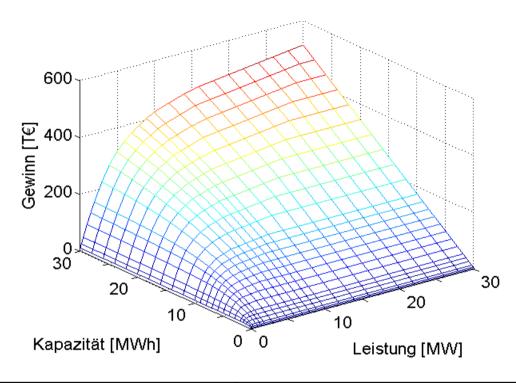
Speichereinsatz in Fabriken Idealer Speicher in Firma A

Vono-i4#4	Leistung	Einsparungen bzw. Gewinn [T€]	
Kapazität		Firma A	
5 MWh	1,5 MW	105	
10 MWh	20 MW	726	
30 MWh	10 MW	663	



Speichereinsatz in Fabriken Idealer Speicher in Firma B

Vonozität	Leistung	Einsparungen bzw. Gewinn [T€]		
Kapazität		Firma A	Firma B	
5 MWh	1,5 MW	105	143	
10 MWh	20 MW	726	185	
30 MWh	10 MW	663	238	



Speichereinsatz in Fabriken Idealer Speicher am Netz

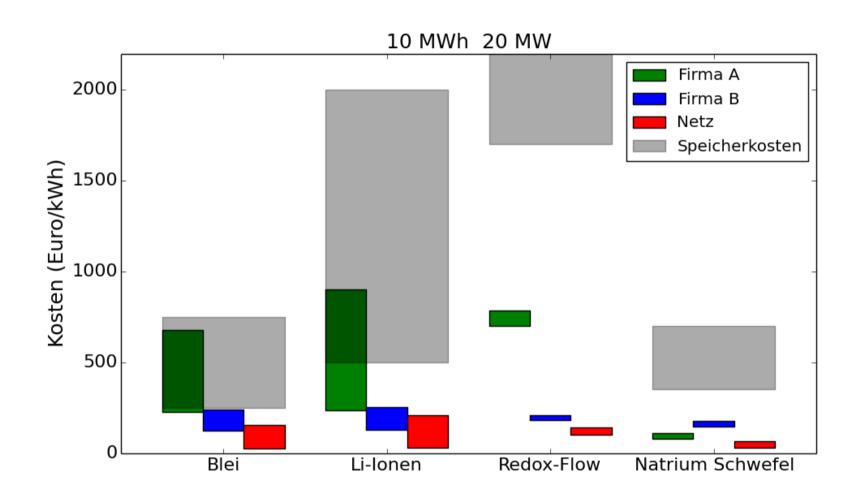
Vonozität	Loiotuna	Einsparungen bzw. Gewinn [T€]		
Kapazität	Leistung	Firma A	A Firma B Netz	Netz
5 MWh	1,5 MW	105	143	67
10 MWh	20 MW	726	185	170
30 MWh	10 MW	663	238	417

Speichereinsatz in Fabriken Vergleich verschiedener Speichertechnologien

Speicher- technologie	Kapazitätspreis	Leistungspreis/ max. C-Rate	Nutzungs- grad	Zyklen- zahl	S e I b s t - Entladung
Blei	250-750 €/kWh	2 C	75-90 %	500-5000	3 %/m
Li-lonen	500-2000 €/kWh	4 C	80-94 %	500-10000	5 %/m
Redox-Flow	200-500 €/kWh	1500-4500 €/kW	70-80 %	10000	<1 %/y
N a t r i u m - Schwefel	350-700 €/kWh	0,12 C	75-80 %	1000-1000 0	-

Spezifische Nutzenschwelle:

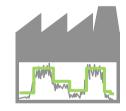
Investitionskosten werden durch Einsparungen bzw. Gewinn gedeckt



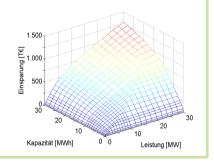
Speichereinsatz in Fabriken Spezifische Nutzenschwellen

- 1. Motivation
- 2. Vorstellung FOREnergy
- 3. Energiebezugsorientierte Planung und Steuerung
- 4. Speichereinsatz in Fabriken
- 5. Zusammenfassung und Ausblick

Zusammenfassung und Ausblick


Energiewende

- Erneuerbare Energieträger schaffen Preisunsicherheit
- Sportmarkt: Sinkende Preise, aber höhere Schwankungen
- Energieflexible Verbraucher synchronisieren Angebot und Nachfrage


Planung und Steuerung

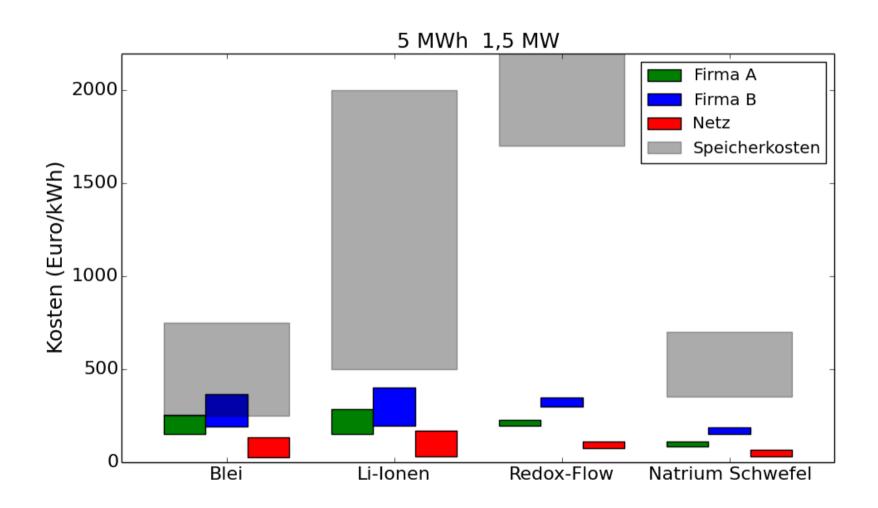
- Planung und Prognose von fabrikeigenen Anlagen und Marktpreisen
- Abgleich des Produktionsbedarfs mit Energieerzeugung bzw. -bezug
- Nutzen kurzfristiger Schwankungen am Sportmarkt durch Speicher

Speichereinsatz in Fabriken

- Größeres Wirtschaftlichkeitspotenzial als Einsatz am Netz
- Investition im Moment nicht wirtschaftlich
- Untersuchung in Kombination mit KWK

Backup

Backup


V:4#4	l aintena	On aigh ay ta ah ya la si a	Spezifische Nutzenschwelle [€/kWh]		
Kapazität	Leistung	Speicher-technologie	Firma A	Firma B	Netz
	1,5 MW	Blei-Säure	150 - 252	188 - 366	23 - 130
		Li-lonen	152 - 283	193 - 398	24 - 167
5 MWh		Redox-Flow	21 - 25	33 - 37	8 - 12
Jiwwii	(0,6 MW) ²	TCGOX-1 10W	172 - 201 €/kW	263 - 299 €/kW	64 - 96 €/kW
		Natrium Schwefel	81 - 109	152 - 185	30 - 63
		Schwungmasse	1	1	1
		Blei-Säure	228 - 679	123 - 237	26 - 154
		Li-lonen	235 - 902	126 - 254	27 - 209
10 MWh	20 MW	Redox-Flow	78 - 87	20 - 23	11 - 15
10 1010011	$(1,2 MW)^2$		622 - 699 €/kW	159 - 184 €/kW	88 - 124 €/kW
		Natrium Schwefel ²	80 - 109	144 - 175	30 - 63
		Schwungmasse	4	1	4
		Blei-Säure	130 - 263	26 - 103	22 - 133
		Li-lonen	134 - 299	64 - 109	25 - 173
30 MWh	10 MW	Redox-Flow	23 - 27	9 - 10	8 - 12
00 1010011	(3,6 MW) ²	TOGON 1 10W	181 - 212 €/kW	69 - 80 €/kW	67 - 99 €/kW
		Natrium-Schwefel ²	80 - 108	73 - 84	30 - 63
		Schwungmasse	1	0,46	1

