Techno-ökonomische Bewertung von Anwendungen für Stromspeicher

Vortrag im Rahmen der EnInnov 2014

Annedore Kanngießer Graz, 14. Februar 2014

Gliederung des Vortrags

Motivation & Zielsetzung

Methoden

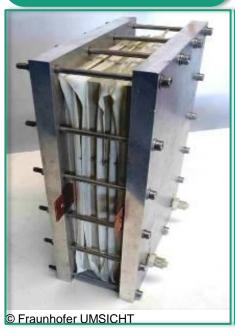
Szenarienrechnungen Schlussfolgerungen & Ausblick

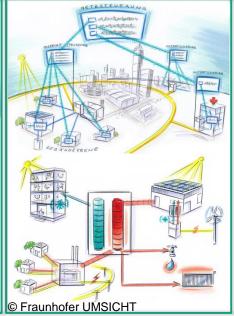
Aktuelle Forschungsfelder im Bereich Energiespeicher

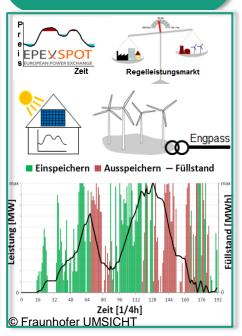
Speichertechnologie

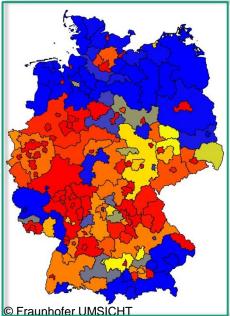
- Echte Speicher:

 Technologische

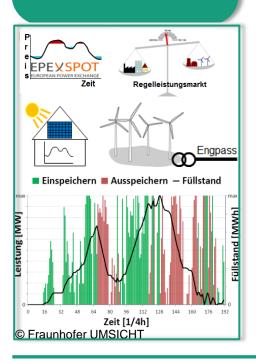

 Neu- und Weiterentwicklung
- Virtuelle Speicher:
 Aggregation dezentraler Flexibilitätstechnologien


Speicheranwendung


Wie/Wo sollte der Speicher eingesetzt werden für maximalen Erlös?


Speicherbedarf

Wo existiert wann wie viel positiver bzw. negativer Energieaus-gleichsbedarf?



Forschungsfeld "Speicheranwendung"

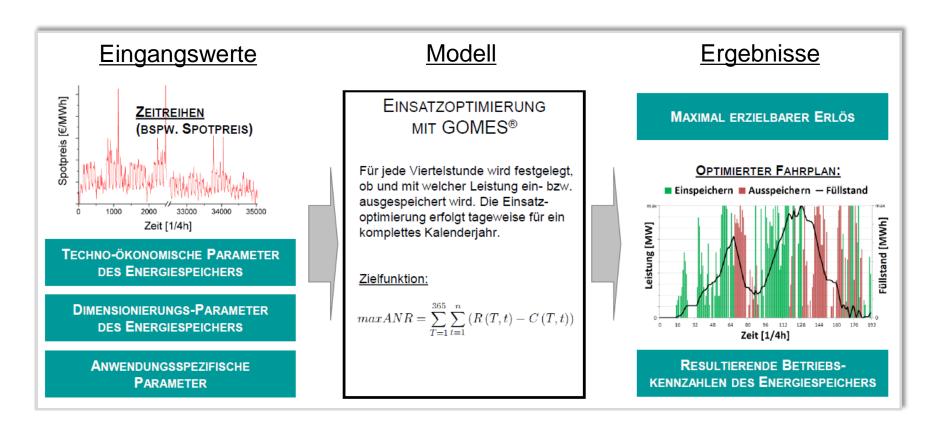
Speicheranwendung

Wie/Wo sollte der Speicher eingesetzt werden für maximalen Erlös?

- Gedankliche Ausgangssituation: potenzieller Investor denkt über Bau und Betrieb eines Speichers nach
- Offene Fragen aus betriebswirtschaftlicher Sicht
 - Welche Speicheranwendungen bzw. Märkte gibt es?
 - In welcher Anwendung bzw. welchem Markt kann wie viel Erlös erzielt werden?
 - Wie hoch dürfen die Investitionskosten für den Speicher sein, damit Wirtschaftlichkeit möglich?
 - Welche Speichertechnologie ist am vorteilhaftesten?
 - Welche Dimensionierung sollte der Speicher haben (Verhältnis inst. Kapazität zu inst. Leistung)?

"Techno-ökonomische Bewertung von Speicheranwendungen"

Gliederung des Vortrags


Motivation & Zielsetzung

Methoden

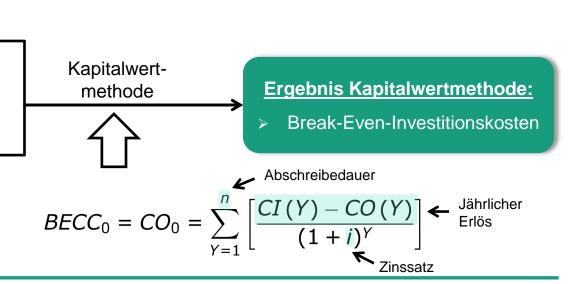
Szenarienrechnungen Schlussfolgerungen & Ausblick

- Generisches Optimierungsmodell für Energiespeicher (GOMES®)
- Break-Even-Investitionskosten als Kennzahl für ökonomische Bewertung

Funktionsprinzip GOMES®

- Speicher ist Preis-Nehmer
 - → Einfluss des Speicherbetriebs auf Markt wird nicht berücksichtigt

Break-Even-Investitionskosten als Kennzahl für ökonomische Bewertung


- Für Kapitalwert = 0, Umstellen der Kapitalwertformel nach den anfänglichen Investitionskosten → Break-Even-Investitionskosten (BECC₀)
- Wirtschaftlichkeit gegeben, wenn gilt: Reale Investitionskosten < Break-Even-Investitionskosten</p>

Ergebnis aus Modell:

- Erreichbarer Jahreserlös
- > Anzahl gefahrene Zyklen

Wählbare Eingangsgrößen:

- Zinssatz
- Abschreibedauer

Gliederung des Vortrags

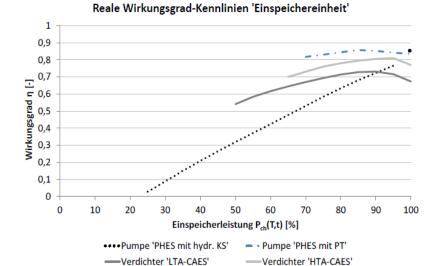
Motivation & Zielsetzung

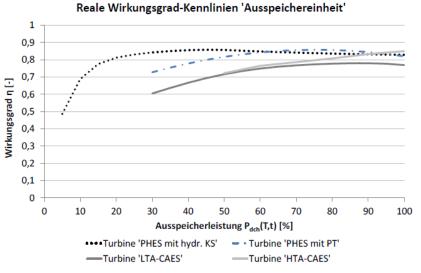
Methoden

Szenarienrechnungen Schlussfolgerungen & Ausblick

- Übersicht Szenarienrechnungen
- Parametrisierung des Modells
- Break-Even-Investitionskosten im Technologievergleich
- Ausgewählte Sensitivitäten

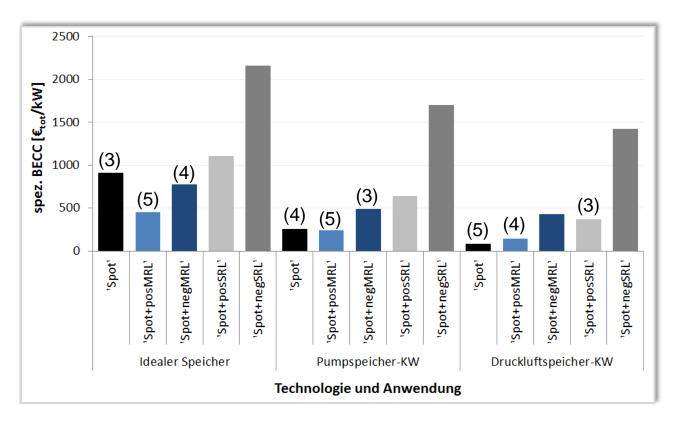
Übersicht Szenarienrechnungen


- Betrachtete Technologien
 - Pumpspeicherkraftwerk (Typen: Pumpturbine, Tandemsatz mit hydr. Kurzschluss)
 - Druckluftspeicherkraftwerk (Typen: LTA-CAES, HTA-CAES)
 - Idealer Speicher = Referenz
 - Idealer Speicher mit einzelnen nicht-idealen Parametern für Sensitivitätsanalyse


- Betrachtete Anwendungen
 - Handel am Day-Ahead-Spotmarkt: ,Spot'
 - Bereitstellung von Regelleistung mit parallelem Handel am Spotmarkt: ,Spot+negMRL', ,Spot+posMRL', ,Spot+negSRL', ,Spot+posSRL'

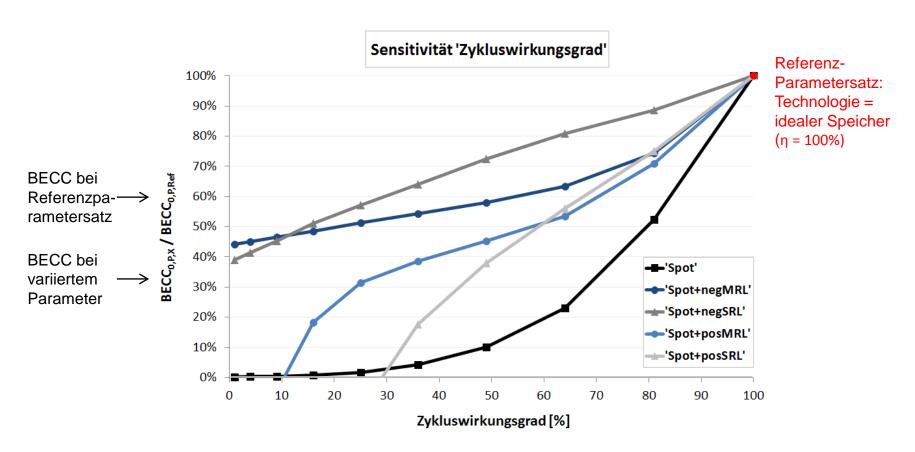
Parametrisierung des Modells (1)

	ldealer Speicher	Pumpspeicher- kraftwerk	Druckluftspeicher- kraftwerk
Zykluswirkungsgrad [%]	100	Siehe Abbildungen	Siehe Abbildungen
Untere Teillastgrenze [% v. P _{max}]	0,1	Siehe Abbildungen	Siehe Abbildungen
Selbstentladerate [%/d]	0	0	0,5
Var. Betriebskosten [€/MWh]	0	0,5	2
Var. Anfahrkosten [€/(MW*Start)]	0	2	4

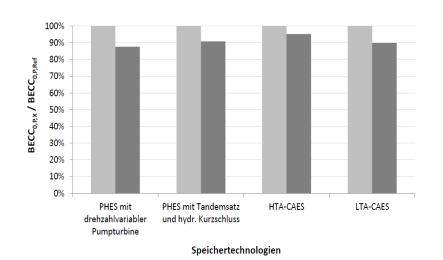

Parametrisierung des Modells (2)

	,Spot'	,Spot+ negMRL'	,Spot+ posMRL'	,Spot+ negSRL'	,Spot+ posSRL'
Verhältnis von inst. Kapazität zu inst. Leistung [Wh/W]	7	11	3	13	6
Angebotsstrategie RL (Zeitscheibe und angebotene Leistung)	-	00-08 Uhr, P _{ch,max}	08-20 Uhr, P _{dch,max}	Nebenzeit, P _{ch,max}	Hauptzeit, P _{dch,max}
Angebotsstrategie RL (Angebotener Leistungs- und Arbeitspreis)	-	LP: Ø der Angebote mit Zuschlag in Zeitscheibe, AP: Jährlicher Median der ¼-stdl. Grenz-Arbeitspreise			

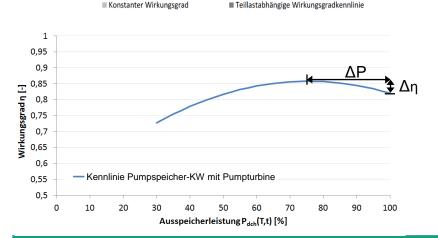
- Gewählte Parameter für Kapitalwertmethode
 - Abschreibedauer = 30 Jahre
 - Kalkulations-Zinssatz = 6%
 - Technologiespezifisches Kostenverhältnis = 0,07


BECC im Technologievergleich

- In 2011 ist ,Spot+negSRL' wirtschaftlich deutlicher attraktiver als andere Anwendungen
- BECC_{IdealerSpeicher} > BECC_{Pumpspeicher-KW} > BECC_{Druckluftspeicher-KW}
- Rangfolge der Anwendungen verschiebt sich technologieabhängig, Grund: unterschiedliche Sensitivitäten der Anwendungen auf techno-ökonomische Parameter


Sensitivitäten – Beispiel Zykluswirkungsgrad

- Unterschiedliche Mechanismen ,Spot+negRL' vs. ,Spot+posRL' erkennbar
- Spot' reagiert über weite Bereiche sensitiver auf Eingangsparameter Zykluswirkungsgrad als ,Spot+RL'



Sensitivitäten – Beispiel konstanter Wirkungsgrad vs. teillastabhängige Wirkungsgradkennlinie

Beispiel: Speicheranwendung ,Spot'

Bei Verwendung eines konstanten Wirkungsgrades: systematische Überschätzung der resultierenden BECC um ca. 5 bis 14%

Kriterien für Stärke der Überschätzung:

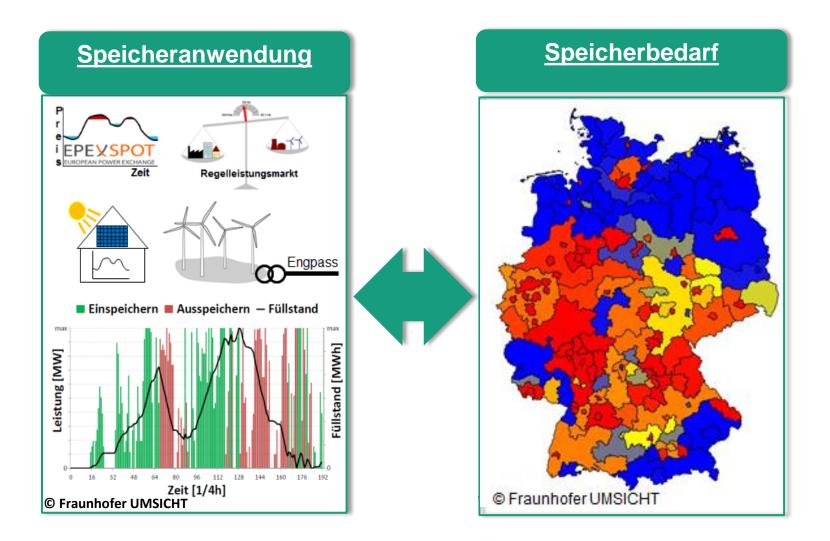
$$\blacksquare$$
 $\triangle P = |P_{max}' - P_{max}'|$

■ Δη =
$$|, \eta_{max}' - , \eta \text{ bei } P_{max}'|$$

Mit P_{max} = bevorzugter Betriebspunkt in Anwendung ,Spot'

Überblick über weitere Sensitivitäten

Geringer Einfluss	Mittlerer Einfluss	Hoher Einfluss
- Weitere techno- ökonomische Parameter	Parameter für Investitions- kostenrechnungAngebotsstrategie am Regelleistungsmarkt	- Gewähltes Zeitreihen-Jahr



Schlussfolgerungen

- Bereits Variation einzelner Eingangsparameter kann großen Einfluss auf erzielbaren Jahreserlös und damit auf resultierende Break-Even-Investitionskosten ausüben
 - Bei Interpretation von Studienergebnissen zu Erlösmöglichkeiten von Stromspeichern immer mitberücksichtigen
- Bei hier betrachteten Kombinationen aus Anwendung & Technologie sind der Zykluswirkungsgrad und das gewählte Jahres-Zeitreihe Parameter mit hohem Einfluss
- Erreichbare Erlössteigerung durch bspw. technologische Verbesserung des Zykluswirkungsgrades ist stark anwendungsabhängig
 - Individuelle Gegenüberstellung Mehrerlös und Mehrinvestitionskosten nötig
- Systematische Überschätzung des Erlöses bei Verwendung konstanter Wirkungsgrad
- Unabhängig von Sensitivitäten und Technologie besitzt derzeit die Anwendung "Spot+negSRL" die höchsten Erlösmöglichkeiten für Stromspeicher
 - Aussage über Wirtschaftlichkeit wird erhalten durch Gegenüberstellung reale Investitionskosten an hier berechneten Break-Even-Investitionskosten

Ausblick

Techno-ökonomische Bewertung von Anwendungen für Stromspeicher

Vortrag im Rahmen der EnInnov 2014

Vielen Dank für Ihre Aufmerksamkeit!

Annedore Kanngießer, Gruppenleiterin Energiesystemoptimierung, Tel. +49 (0) 208 8598 1373, annedore.kanngiesser@umsicht.fraunhofer.de

