

Inhalt

Gliederung

- Projekt Smart Cities Villach "Realising Villach's Smart City VIsion Step I"
- Historie
- Status Quo und Grundlagen zum Eigenverbrauch
- Steigerung des Eigenverbrauchs
 - Dimensionierung
 - Ausrichtung der PV-Anlage
 - Demand Side Management (DSM)
 - Speicherintegration
- Fazit

Projekt Smart Cities Villach

Villach wird smarter

- Projekt: Realising Villach´s Smart City VIsion Step I
- Ziel ist es im Konsortium in und mit der Stadt Villach ein Konzept für intelligente Energienetze und innovative Energiespeicher mit sauberer erneuerbarer Energie in einem Demogebiet umzusetzen
- > Bewusstseinsschaffung der Bürgerinnen/Bürger hinsichtlich einer umweltfreundlichen Zukunft ihrer Stadt mithilfe neuer Finanzierungs- und Geschäftsmodelle

Projektpartner

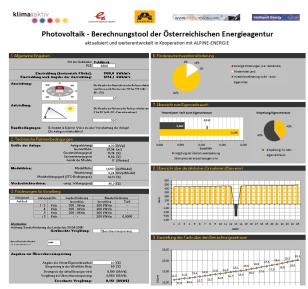
Projekt Smart Cities Villach

Realising Step I

- Beteiligt an zwei Arbeitspaketen
- Integration und Betrieb von elektrochemischen Speichern
- Integration und der Test eines Speichers unter realen Netzbedingungen

Highlights 1. Jahr

- Zusammenspiel Größe der Photovoltaikanlage und Speichergröße in Abhängigkeit von Ertrags- und Lastprofil
- Untersuchungen zu Regler Strategien für netzparallele Speichersysteme
- Amortisationsbetrachtungen von netzparallelen Speichersystemen



Historie

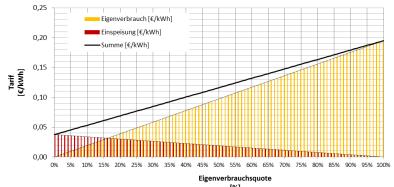
PV-Tool: Amortisation der Anlagen im Fokus

- Kooperation mit Österreichischer Energieagentur
- Berücksichtigung der österreichischen PV-Förderung
- Eigenverbrauch muss abgeschätzt werden
- Wirtschaftlichkeitsberechnung mittels Kapitalwertmethode
- Erweitert um das Thema Speicherintegration im Zuge einer Bachelorarbeit

Photovoltaik Berechnungstool > > ONLINE

- ALPINE-ENERGIE Energieerzeugungsanlagen
 - klima:aktiv PV Rechner
- PV Austria PV Rechner

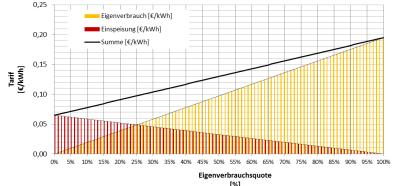
In Zusammenarbeit mit


Überblick Tarife und Förderungen

- Marktpreis
 3,75 €cent/kWh (1.Quartal 2014 E-Control)
- Einspeisevergütung der Energieversorger6 8 €cent/kWh (PV-Austria)
- Fördertarif der OeMAG
 12,5 €cent/kWh + 200€/kWp Investitionsförderung = 14,1 €cent/kWh (OeMAG)
- Investitionsförderung seitens des KLIEN (derzeit noch nicht bekannt)

Tarifsituation in Österreich abrufbar im Netz unter:

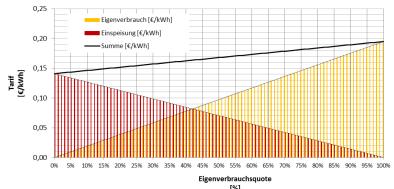
- E-Control Energie Control GmbH
- > PV-Austria Bundesverband Photovoltaik
- OeMAG Abwicklungsstelle für Ökostrom AG


Überblick Tarife und Förderungen

- Marktpreis 3,75 €cent/kWh (1.Quartal 2014 - E-Control)
- Einspeisevergütung der Energieversorger
 6 8 €cent/kWh (PV-Austria)
- Fördertarif der OeMAG
 12,5 €cent/kWh + 200€/kWp Investitionsförderung = 14,1 €cent/kWh (OeMAG)
- Investitionsförderung seitens des KLIEN (derzeit noch nicht bekannt)

Tarifsituation in Österreich abrufbar im Netz unter:

- E-Control Energie Control GmbH
- > PV-Austria Bundesverband Photovoltaik
- OeMAG Abwicklungsstelle für Ökostrom AG


Überblick Tarife und Förderungen

- Marktpreis 3,75 €cent/kWh (1.Quartal 2014 - E-Control)
- Einspeisevergütung der Energieversorger6 8 €cent/kWh (PV-Austria)
- Fördertarif der OeMAG
 12,5 €cent/kWh + 200€/kWp Investitionsförderung = 14,1 €cent/kWh (OeMAG)
- Investitionsförderung seitens des KLIEN (derzeit noch nicht bekannt)

Tarifsituation in Österreich abrufbar im Netz unter:

- E-Control Energie Control GmbH
- > PV-Austria Bundesverband Photovoltaik
 - <u>OeMAG Abwicklungsstelle für Ökostrom AG</u>

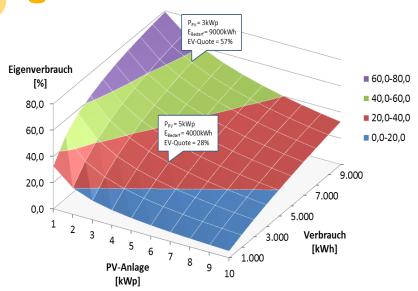
Grundlagen Eigenverbrauch

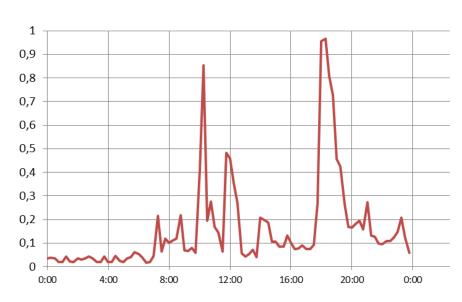
EV-Quote, Solarer Deckungsgrad, Bilanzielle Eigendeckung

- Die **Eigenverbrauchsquote** ist der Quotient aus der direkt vor Ort genutzten Energie (E_{PV,FV}) und der gesamten Energie (E_{PV.tot}) die von der PV-Anlage geliefert wird.
- Der **Solare Deckungsgrad** (auch Autonomiegrad) beschreibt die direkt vor Ort genutzte Energie (E_{PV.EV}) von der PV-Anlage dividiert durch den gesamten Energiebedarf des Verbrauchers (E_{tot}).
- Die *Bilanzielle Eigendeckung* wird die gesamte Energie (E_{PV.tot}), die von der PV-Anlage geliefert wird, dividiert durch den gesamten Energiebedarf des Verbrauchers (Etot)

Formeln

Eigenverbrauchsquote [%] =
$$\frac{E_{PV,EV}[kWh/a]}{E_{PV,tot}[kWh/a]} \cdot 100[\%]$$

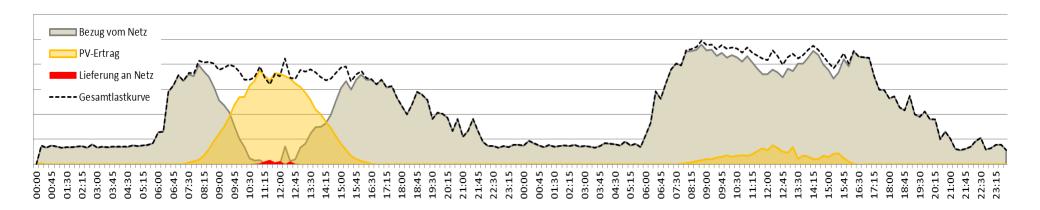

$$Eigenverbrauch squote \ [\%] = \frac{E_{PV,EV} \left[kWh/a\right]}{E_{PV,tot} [kWh/a]} \cdot 100 \ [\%] \qquad Solarer \ Deckungsgrad \ [\%] = \frac{E_{PV,EV} \left[kWh/a\right]}{E_{tot} [kWh/a]} \cdot 100 \ [\%] \qquad Bilanzielle \ Eigendeckung \ [\%] = \frac{E_{PV,tot} \left[kWh/a\right]}{E_{tot} [kWh/a]} \cdot 100 \ [\%]$$


Bilanzielle Eigendeckung [%] =
$$\frac{E_{PV,tot}[kWh/a]}{E_{tot}[kWh/a]} \cdot 100[\%]$$

Grundlagen Eigenverbrauch

Eigenverbrauch - Musterhaushalt

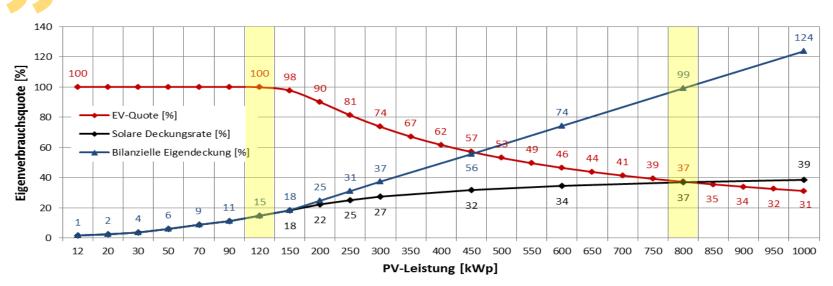
Betrachtungen zur Optimierung des Eigenverbrauchs bei einem Musterhaushalt in Österreich


- Datensatz: Forschungsprojekt "ADRES Concept"
- Kombination aus Anlagengröße, Lastgang und Verbrauch bestimmt die Eigenverbrauchsquote

Eigenverbrauch im Detail

Testanlage Linz (27,6 kWp, 12.11.2013 - 13.11.2013)

Testanlage am Standort in Linz – Eigenverbrauchsanlage Bürogebäude/Warenlager – EV-Quote größer 90 %



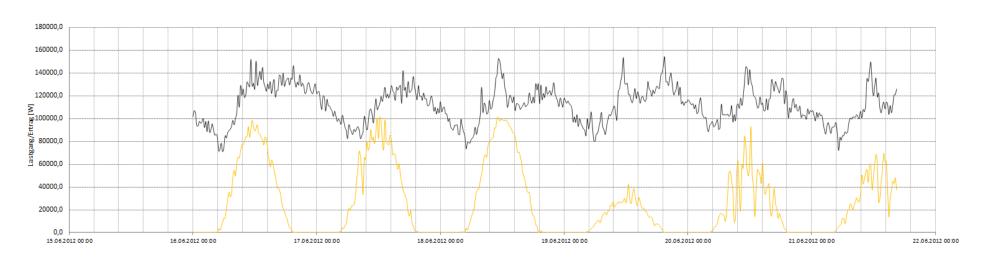
- Untersuchung und Auswertung der Testanlage (Überschusseinspeisung)
 - Analyse mittels unterschiedlicher Lastkurve Rückschlüsse auf Eigenverbrauch Bürogebäude

Erhöhung Eigenverbrauch...

...bei der Dimensionierung

Fakten zum Diagramm: Auslegung bilanzielle Eigendeckung

Energiebedarf: 850MWh Lastprofil: 15-Minutenwerte EV-Quote: 37%

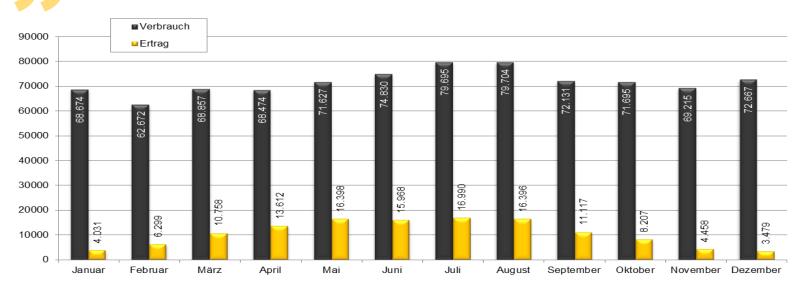

Auslegung EV-Quote 100%

- Energiebedarf: 850MWh
- Lastprofil: 15-Minutenwerte
- **EV-Quote: 100%**

...bei der Dimensionierung

Fakten zum Diagramm: Auslegung EV-Quote 100%

Energiebedarf: 850MWh

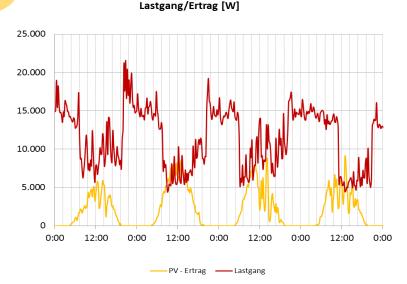

Lastprofil: 15-Minutenwerte

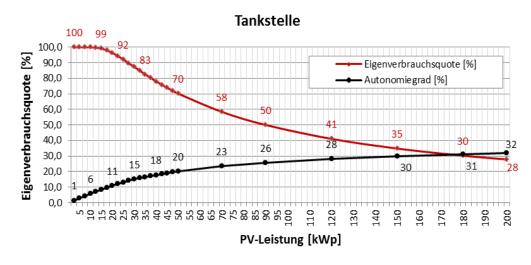
EV-Quote: 100%

...bei der Dimensionierung

Fakten zum Diagramm: Auslegung EV-Quote 100%

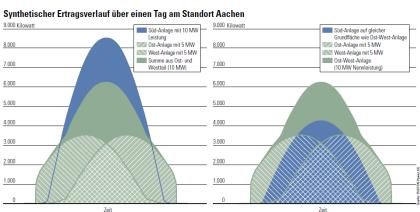
Energiebedarf: 850MWh


Lastprofil: 15-Minutenwerte


EV-Quote: 100%

...bei der Dimensionierung

Optimierung Eigenverbrauch: Verbrauch 100.000kWh/a

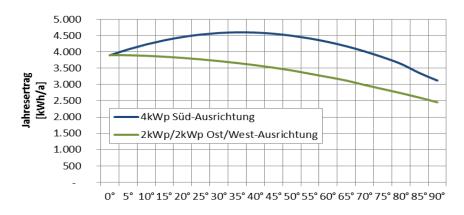


- PV Anlagen bis 20kWp geben hohe Eigenverbrauchsquoten
- Unterschied Verbrauch Tag zu Nacht begrenzt hier die Größe der PV-Anlage

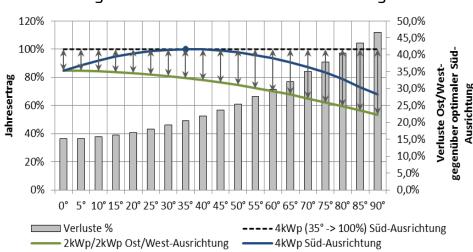
...durch Änderung der Ausrichtung

Vergleich Süd- versus Ost/West-Kraftwerk (Annahme: gleiche Leistung) 800 700 600 500 400 100 0 00:0001:0002:0003:0004:0005:0006:0007:0008:0009:0010:0011:0012:0013:0014:0015:0016:0017:0018:0019:0020:0021:0022:0023:00 200 200 201 Delta Vom WR abgegebene Energie(AC) - SÜD Vom WR abgegebene Energie(AC) - OST/WEST

Vorteil Ost-West-Ausrichtung gegenüber optimaler Südausrichtung


- ➤ Ertragsgang ist dem Lastprofil ähnlicher → höhere EV-Quote erreichbar
- > Wechselrichter kann kleiner dimensioniert werden
- > Bessere Flächenausnutzung z.B. bei Flachdachanlagen

Erhöhung Eigenverbrauch...

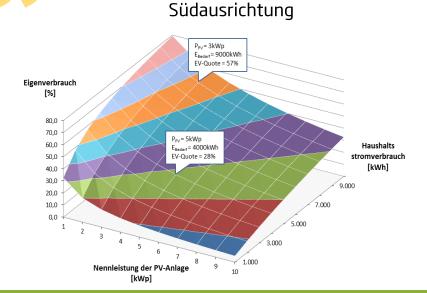


👞 .. durch Änderung der Ausrichtung

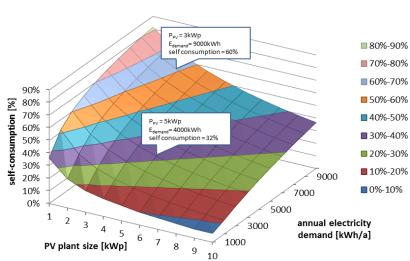
Ost-West-Ausrichtung versus Südausrichtung

Ertragsverluste bei Ost-West-Ausrichtung

Nachteile Ost-West-Ausrichtung gegenüber optimaler Südausrichtung



Energieertragseinbußen bis zu 20%



...durch Änderung der Ausrichtung

Ost-West-Ausrichtung

Erhöhung der Eigenverbrauchsquote mittels Ost-West-Ausrichtung

- Niedrigerer Ertrag und niedrigere Spitzenleistung → Erhöhung der EV-Quote um 3 4%
- Energieertragsverluste bis zu 20%
- Energieertragsverluste und Eigenverbrauchszugewinne in Relation stellen

Erhöhung Eigenverbrauch...

...durch Demand Side Management

Thermische Nutzung von PV-Energie

Beispiele: Intelligentes Zuschalten eines Heizelements oder einer Wärmepumpe zur Warmwasserbereitung im Haushalt

Elektromobilität

Beispiel: Laden eines Elektrofahrzeugs

Bestehende Verbraucher

Beispiele: Intelligentes Schalten von Waschmaschine, Trockner ... im Haushalt

Erhöhung der Eigenverbrauchsquote mittels Anpassung des Lastganges

- > Bei thermischer Nutzung oder Elektromobilität sind hohe Steigerungen der EV-Quoten erzielbar
- Bei bestehenden Verbrauchern ist die Steigerung der EV-Quote stark von dem Nutzer abhängig

...durch Speicherintegration

<u>Simulationsbeispiel 1:</u>

 $P_{PV}=5kWp$

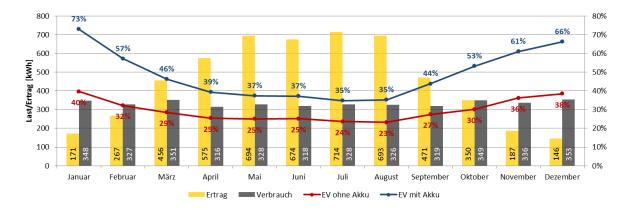
E_{Bedarf}=4000kWh

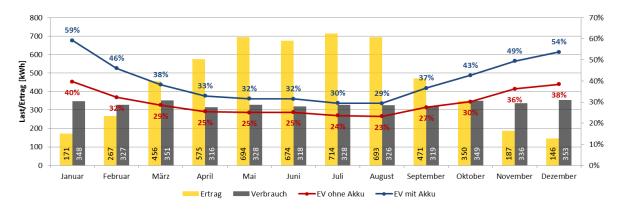
Akkukapazität=10,8kWh

Ergebnis:

Steigerung von 27% auf 43%

Simulationsbeispiel 2:


P_{PV}=5kWp


E_{Bedarf}=4000kWh

Akkukapazität=5,4kWh

Ergebnis:

Steigerung von 27% auf 36%

...durch Speicherintegration

<u>Simulationsbeispiel 3:</u>

 $P_{PV}=3kWp$

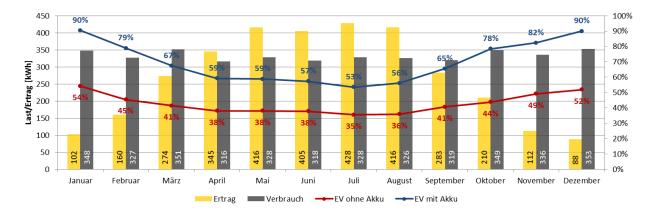
E_{Bedarf}=4000kWh

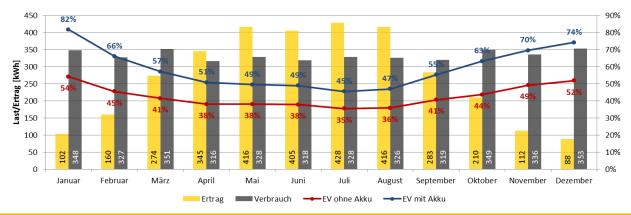
Akkukapazität=10,8kWh

Ergebnis:

Steigerung von 40% auf 64%

Simulationsbeispiel 4:


 $P_{PV}=3kWp$


E_{Bedarf}=4000kWh

Akkukapazität=5,4kWh

Ergebnis:

Steigerung von 40% auf 54%

Eigenverbrauch

Aufgrund sinkender Einspeisetarife bzw. begrenzt vorhandener Einspeisetarife durch Förderung, wird die Rolle des Eigenverbrauchs für die Wirtschaftlichkeit der PV-Anlage immer wichtiger.

Erhöhung Eigenverbrauch

- > Festlegung der EV-Quote prinzipiell bei der Dimensionierung der PV-Anlage Ist eine Auslegung der Anlage nahe den 100% EV-Quote nicht möglich oder nicht gewünscht, kann durch andere Maßnahmen eine Erhöhung herbeigeführt werden.
- Große Potentiale bei Eigenverbrauchserhöhung durch: "Zusätzliche (Groß-)Verbraucher" wie z.B. Warmwasserbereitung, Elektromobilität, große Speicher
- Kleine Potentiale bei Eigenverbrauchserhöhung durch: Änderung der Ausrichtung, intelligentes Schalten unterschiedlicher Verbraucher, kleine Speicher

Vielen Dank für die Aufmerksamkeit!

Kontakt

DI(FH) Franz Jetzinger Technik / Forschung & Entwicklung

ALPINE-ENERGIE Österreich GmbH Winetzhammerstraße 6, A-4030 Linz

Phone: +43 732 90610 369 Mobile: +43 664 884 19 470

E-Mail: franz.jetzinger@alpine-energie.com
Home: http://www.alpine-energie.com