

Agenda

- 1. Einleitung & Fragestellung
- 2. Ein dreistufiges Modell für national-strategischen Netzausbau
- 3. Ein illustratives Beispiel
- 4. Zusammenfassung & Ausblick

Was bedeutet "optimal" im Kontext von Netzausbau?

Was bedeutet "optimal" im Kontext von Netzausbau?

Der Standardansatz

- Maximiere Konsumentenrente, Engpassrente und Erzeugerprofite abzüglich der Ausbaukosten
- Kann als Optimierungsmodell mit Standardsoftware gelöst werden

Drei Einschränkungen (im europäischen Kontext)

- Ignoriert Verteilungsaspekte zwischen Regionen
 Netzausbau unterliegt nationaler Entscheidungsgewalt
- Impliziert gleiche Gewichtung der drei Interessensgruppen Regulierer setzen u.U. unterschiedliche Prioritäten
- Abstrahiert von Umverteilungseffekten
 Netznutzungsgebühren beeinflussen die Nachfrage

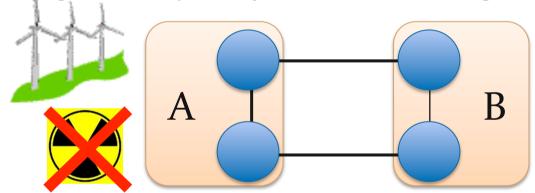
Die Diskrepanz im europäischen Stromsektor

Hoher Bedarf an Netzausbau

- Verschiebung im Erzeugungspark durch Erneuerbare
- Einführung von "market coupling" erfordert mehr Übertragungskapazität zwischen Märkten

(Regulierte) Finanzierung von Netzausbau

- Die kurzfristige Einsatzplanung von Kraftwerken sichert den ÜNB keine ausreichenden Erträge durch Engpassrenten
- Netznutzungsentgelte werden durch den Regulierer festgelegt und garantieren den ÜNB die Refinanzierung von Investitionen



Ein dreistufiges Modell für national-strategischen Netzausbau

Ein illustratives Beispiel – die Rahmenbedingungen

- Wir nehmen ein simples 2-Länder-Netz an:
 - Land A: hohe Last im Süden, wenig Last im Norden
 - Land B: mittlere Last, schwache interne Übertragungskapazität
 - Ausgeglichenes System, jeder Knoten weitestgehend autark

- Veränderung in Land A:
 - Abschaltung günstiger Erzeugungskapazität im Süden
 - Installation günstiger Kapazität im Norden

Effiziente Nutzung erfordert Leitungsausbau, auch in Land B

Ein dreistufiges Modell – Struktur & Lösungsansatz

Stufe 1: Koordination

Stufe 2: Netzausbau

Stufe 3: Spotmarkt

EU-Koordinierung (ACER/CEER)

Nash-Gleichgewichts-Auswahlmechanismus

Land A

Nationaler Regulierer

Maximiert
Konsumentenrente
+ Erzeugerprofite

Beachtet Finanzierungsbeschränkung des ÜNB

Land B

Nationaler Regulierer

Maximiert
Konsumentenrente
+ Erzeugerprofite

Beachtet Finanzierungsbeschränkung des ÜNB

Wettbewerblicher & integrierter Spotmarkt
Äquivalent zu "Independent System Operator" (ISO)
Optimiert kurzfristigen Kraftwerkseinsatz,
Knotenpreise, Nachfrage (DC-Lastflussmodell)

Darstellung des Problems als gemischt ganzahliges nicht-lineares Optimierungsmodell

Jeder Regulierer löst ein
Optimierungsmodell unter
Gleichgewichtsnebenbedingungen
Es existieren
(potenziell) mehrere
Nash-Gleichgewichte

Optimierungsmodell

Dargestellt durch

Gleichgewichtsbedingungen (KKT)

Ein dreistufiges Modell – Vergleich

• Drei Fälle zum Vergleich

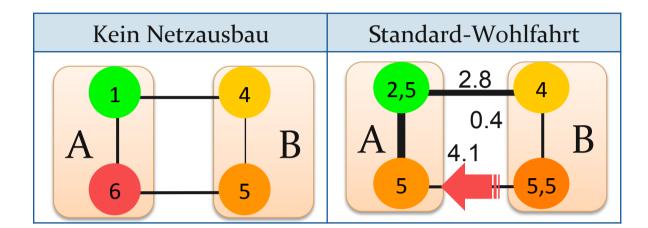
- Kein Netzausbau
- Standardwohlfahrt der gesamten Region

 Konsumentenrente + Erzeugerprofite + Engpassrenteprofite Ausbaukosten
- National-strategischer Ausbau nationale Konsumentenrente + Erzeugerprofite Nebenbedingung: ÜNB macht keinen finanziellen Verlust

Vereinfachende Annahmen

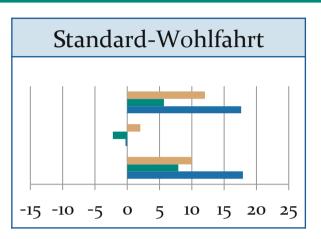

- Knotenpreise (als Darstellung von Redispatch)
- Die Kosten für alle grenzüberschreitenden Leitungen werden zu 50:50 geteilt

Ein illustratives Beispiel


Ein illustratives Beispiel – Kein Netzausbau vs. Standard-Wohlfahrt

3

Ein illustratives Beispiel – Zwei alternative Nash-Gleichgewichte

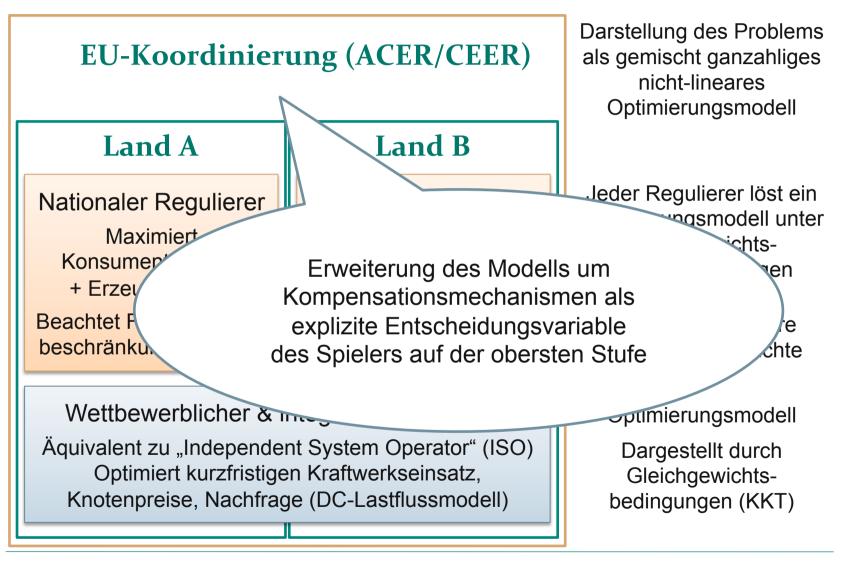


Ein illustratives Beispiel – Zwei alternative Nash-Gleichgewichte

Wohlfahrtsveränderung jeweils relativ zu "Kein Netzausbau"

- Erzeugerprofite
- Konsumentenrente
- Wohlfahrt (C+G)

Zusammenfassung & Ausblick



Zusammenfassung

- Netzausbauplanung nach "Standard-Wohlfahrtsmaximierung" führt zu einer Umverteilung zwischen Marktteilnehmern und über nationale Grenzen hinweg
- Dies wird von vielen Modellen nicht berücksichtigt oder nur ex-post analysiert
- Ohne geeignete und adäquat dotierte Kompensationsmechanismen (Stichwort: ITC, EU COM Regulierung 838) könnte es dazu kommen, daß nationale Regulierer aus Systemsicht zu wenig investieren
- In mehrstufigen Spielen mit Kapazitätstrestriktionen gibt es im Allgemeinen eine Vielzahl von Nash-Gleichgewichten

Daniel Huppmann, Jonas Egerer

Thank you very much for your attention!

DIW Berlin — Deutsches Institut für Wirtschaftsforschung e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

Daniel Huppmann dhuppmann@diw.de

Introduction

The Inter TSO compensation (ITC) mechanism

- Shall provide for compensation of hosting cross-border flows:
 - a) for the costs of losses
 - b) for the costs of making infrastructure available long run average incremental costs (LRAIC)

 Source: EC Regulation 838/2010.

Contribution payments Compensation payments ITC member countries **Costs of losses** Annual Payments in proportion Compensation based on "with-ITC Fund to the absolute value and-without-transit" method of net flows (incl. Costs of infrastructure infrastructure-Perimeter flows Compensation based on and losses Fee per MWh Transit factor (75%) Source: Ruester et al. funds) exported/imported Load factor (25%) (2012).

- Volume of ITC fund: 100M €/year → irrelevant for LRAIC
- Current design → unclear how the ITC motivates investment

Outlook: Introducing a compensation mechanism

EU coordination mechanism (ACER/CEER)

deciding on ITC compensation and cross-border cost allocation

Region A

National regulator deciding on grid investment and network usage tariffs

maximizes CS + GP

subject to funding constraint for grid expansion

Region B

National regulator deciding on grid investment and network usage tariffs

maximizing CS + GP

subject to funding constraint for grid expansion

Spot market

equivalent to Independent System Operator (ISO) optimizing short-term dispatch subject to grid constraints and national network usage tariffs

-ower-level

Jpper-level

Mathematical methodology

Solution strategy:

Following Ruiz, Conejo & Smeers, 2012

- Independent System Operator (short-term dispatch)
 Reformulate quadratic welfare maximization problem using strong duality
- Game between regulators (setting line capacity expansion)
 Derive first-order (KKT) conditions of each regulator's problem with lower-level equilibrium constraints (EPEC), yields a Generalized Nash game (GNE)
- Add upper-level objective function as equilibrium selection tool
 Use disjunctive constraints to reformulate EPEC, solve as Mixed Integer
 Quadratically Constrained Problem (MIQCP)

Problems:

- Convexity of each regulators problem? No
- Existence and uniqueness of equilibrium? Don't know...

Introduction

Transmission planning from national TSO perspective

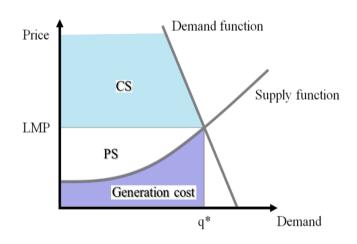
- Congestion rents → limited share of the infrastructure costs,
 remaining network costs recovered by national transmission tariffs
- Currently no functioning ITC ex-ante cost allocation (no functioning cost-benefit allocation)

National decisions:

- Generation (G) versus Load (L) component in the transmission tariff
- National transmission investment planning

European level:

- TEN-E projects / Projects of common interest (funding)
- Ten year network development plan (TYNDP)
- → National investments/tariffs not system optimal



Introduction

- Research question: Transmission planning
- Welfare optimal planning of transmission expansion
- DC Load Flow model with welfare maximization:

$$\max_{\tau} = g \downarrow n, s, t \quad q \downarrow n, t \quad W \quad = \quad \sum_{t} n, t \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t * q \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t + 0.5 * M \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow n, t + 0.5 * M \downarrow n, t \uparrow 2 \right] - \sum_{t} s \uparrow = \left[(A \downarrow n, t * q \downarrow n, t + 0.5 * M \downarrow$$

```
|flow\_ac \downarrow ac,t| \leq Flow\_AC\_max \downarrow ac flow\_ac \downarrow ac,t = \sum n \uparrow \text{($H \downarrow ac,n * delta \downarrow n,t$)} |flow\_dc \downarrow dc,t| \leq Flow\_DC\_max \downarrow dc g \downarrow n,s,t \leq G\_max \downarrow n,s * Availability \downarrow n,s,t \sum t = 1 \uparrow m \text{($g \downarrow n,s,t$)} \leq Res \downarrow n * G\_max \downarrow n,s * m
```


 $\sum s \uparrow = g \downarrow n, s, t - demand \downarrow n, t - ac_input \downarrow n, t - dc_input \downarrow n, t = 0$

References

- EC (2010): Commission Regulation (EU) No 838/2010 of 23 September 2010 on laying down guidelines relating to the intertransmission system operator compensation mechanism and a common regulatory approach to transmission charging.
- Ruester, S., C. Marcantonini, X. He, J. Egerer, C.v. Hirschhausen, and J.-M. Glachant (2012): EU involvement in electricity and natural gas transmission grid tarification. THINK report.

Mathematical methodology

European coordinator

Transmission grid investment

Spot market

Independent System
Operator

optimizing dispatch subject to grid constraints (DC load flow power model) Spot market

equivalent to ISO
optimizing short-term
dispatch
subject to grid constraints
(DC load flow power model)

Spot market

equivalent to ISO
optimizing short-term
dispatch
subject to grid constraints
(DC load flow power model)

