

Modellierung und kombinierte Simulation eines Power-to-Gas Prozesses

Andreas Fleischhacker

Technische Universität Wien Institut für Energiesysteme und Elektrische Antriebe Arbeitsgruppe Elektrische Anlagen

13. Februar 2014

Inhaltsverzeichnis

Motivation

- 2 Power-to-Gas Modell
 - Modell des alkalischen Elektrolyseurs (AEL)
 - Modell der Methanisierung
- 3 Kombinierte Simulation
- 4 Ergebnisse der Analyse
- 5 Schlussfolgerungen

6 Quellen

Das Power-to-Gas Konzept

Konzept

Nennleistungsskalierung durch die Parameter N_S und N_P

Modell des alkalischen Elektrolyseurs (AEL)

$$\mathbf{x}_{in,P2G} = [P_{in}, N_S, N_P]^T$$
$$y_{out,AEL} = \dot{V}_{H2}$$

Elektrochemisches Modell - PV Ansteuerung

Testfunktion: typischer PV Tagesgang + Standbyleistung

Thermisches Modell

Temperaturabhängigkeit

$$\dot{T} = \frac{1}{C_T} \left(\dot{Q}_{gen} - \dot{Q}_{loss} - \dot{Q}_{sens} - \dot{Q}_{cool} \right)$$

Regelung durch die Kühlleistung \dot{Q}_{cool}

Modell der Methanisierung - Triviales Modell

das Gasnetz wird als ideale Senke betrachtet keine Betrachtung der Dynamik

$$\mathbf{y}_{out,P2G} = \mathbf{y}_{out,meth} = \left[\dot{V}_{CH_4}, \dot{V}_{H_2O}, \dot{V}_{CO_2}\right]^T$$

Reaktion mit Kohlenstoffdioxid

$$4\mathrm{H}_{2} + \mathrm{CO}_{2} \longleftrightarrow \mathrm{CH}_{4} + 2\mathrm{H}_{2}\mathrm{O}$$
$$\Delta H_{R}^{0} = -165.12 \,\mathrm{kJ/mol}$$

Gesamtmodell der P2G Anlage

Simuliert in $MATLAB/SIMULINK^{\textcircled{R}}$

Impementierung in zwei Modellnetze

- ► Zwei SINCAL[®]Modellnetze
 - Ländliches Netz Haushalte (H0 und L0) mit PV, Windpark (9MW)
 - Suburbanes Netz Haushalte (H0) mit PV
- ► MATLAB®
 - Algorithmus
 - Optimierung der Speichergröße
- Untersuchung von
 - 2 Szenarien
 - Betriebsmodi der P2G Anlage
 - dynamische Wirkungsgrade

Szenarien

Zwei Szenarien mit unterschiedlichem PV Ausbaugrad

- ► Szenario 1:
 - maximale PV Ausbaustufe
 - maximale Netzbelastung
- ► Szenario 2:
 - quasi "Energieautarkie"
 - ► Speicherung im simulierten Mittelspannungsnetz
 - ► Rückerzeugung (GT, GuD) im übergeordneten Netz (nicht Teil der Simulation)

Jahresdauerkennlinie der P2G Anlage

Ländliches Netz Szenario 1

Ländliches Netz Szenario 2

Suburbanes Netz

Betriebsmodi

Standby mit $P_{P2G,min} = 15\% P_{n,P2G}$

Teillast mit $P_{P2G,min} = 30\% P_{n,P2G}$

Wirkungsgrad der P2G Anlage

Wirkungsgrad im Standby Betrieb (helle Farbe) und Wirkungsgrad im Teillastbetrieb (dunkle Farbe) in Abhängigkeit zur bezogenen P2G Nennleistung

Jährliche Volllaststunden der P2G Anlagen

Volllaststunden im Standby Betrieb (helle Farbe) und Volllaststunden im Teillastbetrieb (dunkle Farbe) in Abhängigkeit zur bezogenen P2G Nennleistung

Standby Batterie

Verhältnis von aufzubringender Standbyenergie (helle Farbe) und speicherbarer Energie (dunkle Farbe) in Abhängigkeit zur bezogenen P2G Nennleistung

Schlussfolgerungen - P2G Modell

- extrem dynamisch ($15\% \rightarrow 100\% P_n$ in $\geq 6s$) falls
 - P2G hochgefahren
 - keine Unterschreitung von $P_{standby}$ (AEL)
- $\blacktriangleright \text{ alkalischen Elektrolyseur} \rightarrow \mathsf{PEM Elektrolyseur}$
 - besseres Teillastverhalten $(0\% \rightarrow 100\% P_n)$
 - kleine Leistungsgrößen bereits vorhanden
- Abwärme
 - vom Elektrolyseur uninteressant
 - von der Methanisierung interessant
- kritische Parameter
 - ► Standby Leistung *P*_{standby}
 - interne Temperatur

Schlussfolgerungen - Kombinierte Simulation

- ► optimal mit Kombination WP und PV
- dynamische Abschaltung
 - ▶ im Winter (nur PV)
 - ▶ in der Nacht (nur PV)
 - ▶ forecast (PV+WP)
- ► zusätzliche Batterie: Verwendung der cut-off Energie
- ▶ niedriger Power-to-Power Wirkungsgrad \rightarrow anderweitige Nutzung von H₂, CH₄ (z.B. Verkehr)

Schlussfolgerungen

Vielen Dank für Ihre Aufmerksamkeit!

Quellen

- 1. "Production of synthetic natural gas in a fluidized bed reactor", Dissertation, Jan Kopyscinski
- 2. "Renewable Energies and Energy Efficiency", Dissertation, Michael Sterner, 2009.
- "Vorteile und Herausforderungen der Kopplung von Gas- und Stromnetzen", Herbert Bauer, GASCADE Gastransport GmbH, 2012.
- "Modeling of advanced alkaline electrolyzers: a system simulation approach", Ø. Ulleberg, International Journal of Hydrogen Energy, vol. 28, no. 1, pp. 21-33, 2003.
- 5. "Design und Analyse: Systemgekoppeltes Verteilnetz der Zukunft", O. Oberzaucher, Diplomarbeit, 2013.
- Äbschätzung des Photovoltaik-Potentials auf Dachflächen in Deutschland", M. Lödl, G. Kerber, R. Witzmann, C. Hoffmann, and M. Metzger, 11. Symposium Energieinnovation, 2010.
- 7. "Das österreichische Gasnetz", C. Edler, TU Vienna, ESEA, 2013.

Anhang

Morgige Netzstruktur (Gas und Strom)

Elektrochemisches Modell

Zusammenhang Strom-Spannung

$$u_{cell} = U_{rev} + \frac{r_1 + r_2 T}{A} i_{cell} + s \log\left(\frac{t_1 + \frac{t_2}{T} + \frac{t_3}{T^2}}{A} i_{cell} + 1\right)$$
(1)

Produzierter Wasserstoff

$$\dot{n}_{H_2} = \eta_F \frac{N_S N_P}{z F}$$

$$\eta_F = \frac{\left(\frac{i_{cell}}{A}\right)^2}{f_1 + \left(\frac{i_{cell}}{A}\right)^2} f_2$$
(2)
(3)

Anhang

Elektrochemisches Modell - Strom/Spannungskennline

Anhang

Elektrochemisches Modell - Wirkungsgrad

$$\frac{\partial \eta_{AEL}}{\partial P_{n,AEL}} < 0$$

Kombinierte Simulation

Algorithmus

Kombinierte Simulation

Optimierung

```
Initialisation
                     \Delta_0 \in (0, \Delta_{max}]
                                                         (Trust area)
                      P_{P2G,0} \leftarrow P_{prev} \text{ or } 0
                                                        (P2G start value)
                      P_{ext 0} \leftarrow \text{load-flow-calc} (first load flow calculation via PSS<sup>®</sup>SINCAL)
                      k \leftarrow 1
repeat
             \Delta = \Delta_0
             while P_{ext} \leq \Delta and P_{ext} > -\Delta do
                       \Delta \leftarrow \frac{1}{2}\Delta
             if P_{ext k} < 0 do
                                                                    feeding back
                      P_{P2G\,k} \leftarrow P_{P2G\,k-1} + \Delta
                                                                    increasing P2G power
                      if P_{P2G k} < 0 do
                                                                    only positive P2G power
                               P_{P2G,k} \leftarrow 0
                      else if P_{P2C|k} < P_{men} do
                                                                     reset
                              P_{P2G k} \leftarrow P_{nrev}
                       end if
             else if P_{ext k} > 0 do
                                                                    feeding
                       P_{P2G,k} \leftarrow P_{P2G,k-1} - \Delta
                                                                    decresing P2G power
                      if P_{P2G k} < 0 do
                                                                    only positive P2G power
                              P_{P2Gk} \leftarrow 0
                      else if P_{P2C|k} > P_{men} do
                                                                     reset
                              P_{P2G,k} \leftarrow P_{nrev}
                      end if
             end if
             k \leftarrow k + 1
                                                                     next iteration step
             P_{prev} \leftarrow P_{P2G,k}
             P_{ext k} = load-flow-calc
                                                                    load flow calculation via PSS®SINCAL
until || P_{ext} || < \varepsilon or P_{P2G} = 0
```

Energieautarkie

$$\eta_{el}E^- = 36\% E^- \equiv E^+$$

Anhang

Standby

Teillast

Wochenlastgang

100% und $25\%~\mathrm{P2G}$

Anhang

Zyklen

