Social Acceptance of Transmission Lines in Europe

Jed Cohen ^{1,2}

with Johannes Reichl¹ Michael Schmidthaler¹ Klaus Moeltner²

at

The Energy Institute at Johannes Kepler University Linz, Austria¹ Agricultural and Applied Economics Dept. at Virginia Tech, USA²

jedcohen@vt.edu

13.2.2014

Table of Contents

Introduction

- The Renewable Future
- Roadblock of the Renewable Future

Our Project

- A Massive Survey Effort
- Data Analysis

3 Results

Conclusions

The Renewable Future Roadblock of the Renewable Future

The Renewable Future

image from Wikipedia "Little Chyne Court Wind farm" page

Jed Cohen 1,2

TU Graz 13.2.2014

The Renewable Future Roadblock of the Renewable Future

Requires New Infrastructure

Including wind farms, solar arrays, and most notably **power lines** to connect these disparate generation sources.

A study funded by European Commission found that 28,400 kilometers (km) of overhead lines are necessary to accommodate the changing electricity landscape, 80% of which are directly due to the increase in renewable generation sources [1].

New infrastructure is also needed to ensure the security of future energy supply [1].

The Renewable Future Roadblock of the Renewable Future

Future of the European Electricity Grid (From [1])

Local Opposition

- Across Europe local opposition to infrastructure projects causes delays and occasionally cancellation.
- Opposition is caused by the negative aspects of infrastructure construction (e.g. diminished viewsheds, increased noise, pollution or traffic, safety concerns and loss of property value).
- This has been characterized as a "not in my backyard" (NIMBY) response since the majority of Europeans generally favor infrastructural improvements [2].
- A vast and emerging literature investigates the causes and characterization of such opposition.

The Renewable Future Roadblock of the Renewable Future

from [5]

A Massive Survey Effor Data Analysis

The social acceptance of grid expansion and transmission lines in Europe.

- To support grid developers with implementable strategies to 'bring locals to the table' and decrease local opposition to the point where locals consider a valid compromise.
- To provide strategies that will lead to minimum cost and minimum delay in grid expansion and fair compensation for adversely affected local stakeholders.

A Massive Survey Effort

- A 32 page survey was translated into 23 languages and administered in all EU-27 nations
- Over 13,000 interview hours and over 400,000 contact attempts
- Responses include household specific: demographic, lifestyle, and energy consumption information
- About 280 responses per nation with 7,659 responses in the sample

<mark>A Massive Survey Effor</mark> Data Analysis

We asked the following ACCEPTANCE question which began by presenting one of four possible scenarios to each respondent.

A Massive Survey Effort Data Analysis

The Scenarios:

- Baseline During the next year a high-voltage power line with standard pylons would be built in your neighborhood. This power line (including pylons) would be up to 60 meters high and be built at a distance of 250 meters from your home.
- Economic Treatment (T1) This infrastructure will benefit your country's economy including, enhanced economic growth, especially in your region, resulting in the creation of new jobs.
- Environment Treatment (T2) This infrastructure will benefit the environment and complements your country's measures to fight climate change.
- Community Treatment (T3) The government and electricity company would compensate you and your community by providing budget for measures to improve the quality of life in your neighborhood.

Our Project Results

<mark>A Massive Survey Effor</mark> Data Analysis

Possible Responses

I would...

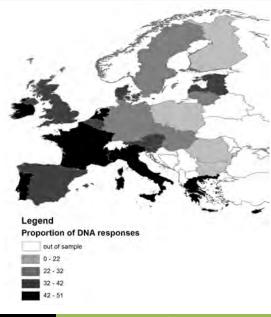
- ONA "definitely not accept without opposition"
- Operation PNA "probably not accept without opposition"
- OPYA "probably accept without opposition"
- OYA "definitely accept without opposition"

...the proposed infrastructure project

<mark>A Massive Survey Effo</mark> Data Analysis

We find:

Table : Survey responses to the acceptance question by country (%)


	DNA	PNA	PYA	DYA	No. Obs.
France	42.65	28.32	23.66	5.38	279
Germany	27.1	27.73	33.33	11.84	321
Italy	42.61	29.55	18.9	8.93	291
UK	38.41	26.16	27.15	8.28	302
Austria	39.51	25.87	28.32	6.29	286
Belgium	32.41	29.64	28.46	9.49	253
Denmark	38.72	24.81	27.07	9.4	266
Finland	15.44	27.02	47.02	10.53	285
Netherland	42.16	22.65	25.44	9.76	287
Spain	35.33	28.33	27.67	8.67	300
Sweden	26.71	30.14	32.88	10.27	292
Portugal	42.16	20.56	24.74	12.54	287
Ireland	44.48	22.07	24.48	8.97	290
Luxembourg	31.16	27.54	32.61	8.7	276
Bulgaria	20.43	23.66	32.97	22.94	279
Czech	28.47	24.07	32.88	14.58	295
Estonia	40.78	24.47	26.6	8.16	282
Hungary	23.59	25.91	39.2	11.3	301
Latvia	34.51	22.54	30.63	12.32	284
Lithuania	27.05	28.11	29.89	14.95	281
Poland	21.19	17.22	47.02	14.57	302
Romania	12.08	16.6	35.09	36.23	265
Slovakia	28.52	19.63	33.7	18.15	270
Greece	46.38	24.67	19.41	9.54	304
Cyprus	50.62	22.82	17.01	9.54	241
Slovenia	40.14	21.51	26.16	12.19	279
Malta	36.78	23.37	23.75	16.09	261
Average	33.68	24.63	29.48	12.21	284

N=7659

<mark>A Massive Survey Effort</mark> Data Analysis

Jed Cohen 1,2

TU Graz 13.2.2014

Slide 14

Other information obtained from respondents

Variable	Description	Mean	Std. Dev.
T1	1 if respondent heard economic benefits script	0.2026374	0.4019908
T2	1 if respondent heard environmental benefits script	0.2006789	0.4005345
Т3	1 if respondent heard community compensation script	0.2043348	0.403241
income	annual income in Euros	17699.52	13770.3
male	1 if respondent is male	0.4934064	0.4999892
age35t45	1 if repsondent is age 35-45	0.2372372	0.4254167
age46t60	1 if repsondent is age 46-60	0.3063063	0.4609886
over60	1 if repsondent is older than 60	0.250816	0.4335111
college	1 if respondent completed college	0.4054054	0.4910024
posutil	1 if respondent has a positive view of their energy provider	0.4653349	0.4988294
negutil	1 if respondent has a negative view of their energy provider	0.0584933	0.2346892
satisfied	1 if repondent is satisfied with their level of supply security	0.9040345	0.2945632
urban	1 if respondent considers their neighborhood urban	0.3121817	0.4634138
yearsinarea	number of years repondent has lived at current address	18.52553	15.16288
needgrids	1 if respondent thinks grid expansion is necessary	0.5571223	0.4967588

N=7,659

<mark>A Massive Survey Effor</mark> Data Analysis

Only 56% of our sample awsered 'yes' to the question, "new power grids (including pylons and grid lines) are necessary in order to ensure your country's energy supply in the future."

A Massive Survey Effort Data Analysis

Global Hypothesis

Auxiliary positive information regarding the proposed development project will have a positive impact on acceptance.

Testable Hypothesis

The application of treatment scripts will increase the level of acceptance exhibited by survey participants.

A Massive Survey Effort Data Analysis

Ordered Probit Model

$$\begin{array}{ll} y_i^* = \mathbf{X}_i \boldsymbol{\beta} + \epsilon_i & \epsilon \sim \mathcal{N}(0,1) \\ y_i = 1(\mathsf{DNA}) & i\!f\!f & y_i^* \leq v_1 \\ y_i = 2(\mathsf{PNA}) & i\!f\!f & v_1 < y_i^* \leq v_2 \\ y_i = 3(\mathsf{PYA}) & i\!f\!f & v_2 < y_i^* \leq v_3 \\ y_i = 4(\mathsf{DYA}) & i\!f\!f & y_i^* \geq v_3, \end{array}$$

Where:

- y_i^* is the latent continuous variabe for individual *i*, say a change in utility
- $y_i = \{1, 2, 3, 4\}$ is the observed response to the acceptance question
- β is a vector of slope coefficients
- X is a matrix of explanatory variables
- v_1 , v_2 and v_3 are threshold values that are estimated along with $oldsymbol{eta}$

A Massive Survey Effor Data Analysis

We want to know how the probability of a DNA *"definitely not accept without opposition"* response changes with explanatory variables, and the application of our three treatment scripts.

Marginal Effects

The difference in predicted probabilities for a specified change in \mathbf{X} is denoted the **marginal effect**.

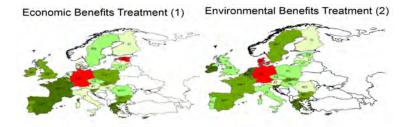
$$rac{\Delta \textit{prob}(y=m|\mathbf{X})}{\Delta \mathbf{X}_k} = \textit{prob}(y=m|\mathbf{X},\mathbf{X}_k=\mathbf{X}_e) - \textit{prob}(y=m|\mathbf{X},\mathbf{X}_k=\mathbf{X}_s)$$

Where:

- m is the ordinal response category, $m = \{1, 2, 3, 4\}$
- **X**_k are the dimensions of X which change from,
- starting values X_s
- to ending values X_e

Introduction	
Our Project	
Results	

 Table : Household-level variable marginal effects on probability of not giving a "definitely not accept" (DNA) response


Variable	Marg. Eff. Estimate	Marg. Eff. Std. Dev	
income	00186	.000491	**
male	0.078	0.009	**
age35t45	-0.046	0.013	**
age46t60	-0.067	0.013	**
over60	-0.058	0.015	**
college	-0.020	0.009	**
posutil	0.023	0.009	**
negutil	-0.066	0.019	**
satisfied	0.025	0.016	
urban	0.018	0.010	*
yearsinhome	-0.001	0.000	*
needgrids	0.089	0.009	**

*estimate is significant at 10% level; **estimate is significant at 5% level

Conclusions

Treatment Effects

Community Benefits Treatment (3)

Table : Treatment effects on probability of not giving a "definitely not accept" (DNA) response

	т1		Т2		Т3	
France	30.66%	**	15.38%	**	12.68%	*
Germany	0.00%		-0.60%		-12.89%	**
Italy	3.55%		8.00%		7.75%	
UK	13.57%	**	9.24%		9.08%	
Austria	0.06%		4.08%		-11.31%	
Belgium	12.13%	*	21.88%	**	10.71%	
Denmark	0.11%		-0.92%		-6.67%	
Finland	4.44%		2.31%		2.66%	
Netherlands	1.27%		22.28%	**	-1.29%	
Spain	20.85%	**	14.85%	**	9.17%	
Sweden	5.69%		10.58%	*	-0.96%	
Portugal	12.52%	*	8.16%		9.08%	
Ireland	12.13%	*	20.12%	**	0.74%	
Luxembourg	9.90%		5.36%		0.26%	
Bulgaria	14.37%	**	13.94%	**	4.73%	
Czech	8.21%		5.83%		0.58%	
Estonia	-4.30%		9.90%		-0.61%	
Hungary	2.99%		5.37%		-2.22%	
Latvia	1.58%		2.98%		-2.04%	
Lithuania	7.56%		8.58%		7.41%	
Poland	14.42%	**	7.57%		7.65%	
Romania	6.71%	**	2.46%		-0.80%	
Slovakia	12.18%	**	11.64%	**	0.89%	
Greece	28.25%	**	23.07%	**	26.96%	**
Cyprus	23.44%	**	25.67%	**	9.83%	
Slovenia	18.81%	**	25.75%	**	6.10%	
Malta	11.76%	*	12.19%	*	9.93%	
Average	10.11%	**	10.95%	**	3.61%	**

*estimate is significant at 10% level; **estimate is significant at 5% level All treatment effect results flow from reduced model.

Conclusions

Treatment scripts have a positive effect on acceptance

Ancillary positive information about a new grid development project can be used to improve local acceptance

Other Conclusions

- Strong heterogeneity between nations in how citizens will respond to a project and auxiliary information.
- Environmental treatment had, on average, the strongest desirable effect, with community benefits having the least positive effect.
- However, 'best' treatment can be chosen in a country/project specific context.

Conclusions

THANK YOU!

TU Graz 13.2.2014

References

[1] ENTSO-E. Ten year network development plan 2012. Technical report, European Network of Transmission System Operators for Electricity, 2012.

[2] Energy technologies: knowledge-perceptions-measures, eur22396.
 ec.europa.eu/research/energy/pdf/energytecheurobarometeren.pdf, 2006. Accessed: 14.6.2013.

[3] Soini, Katriina et al (2011). Local residents' perceptions of energy landscape: the case of transmission lines. Land Use Policy, 28, pgs. 294-305.

[4] Crossley, David. Austin County up in arms about power lines. houstontomorrow.org. Acessed February 5th, 2014. http://www.houstontomorrow.org/livability/story/austin-county-up-in-arms-about-power-lines

[5] Protest against power lines in Washington County. WPXI. Acessed February 5th, 2014. http://www.wpxi.com/news/news/protest-against-power-lines-in-washington-county/nGbsB

We ask:

Q9a-i How do you think YOU would react to the announcement of this power infrastructure program? Please tell me for each of the following alternatives whether you would "*Definitely*", "*Probably*", "*Probably Not*", or "*Definitely Not*" react in this way. Let's take the first one....

INTERVIEWER: READ REACTION (I) AND RECAP RESPONSES, BEFORE COLLECTING SINGLE RESPONSE.

<u>PROGRAMMER</u>: ROTATE ORDER OF POTENTIAL ANSWERS/PRESENTATION (keep first option fixed)

Potential Reactions	Definitely accept without opposition	Probably accept without opposition	Probably not accept without opposition	Definitely not accept without opposition
PROGRAMMER: Q9a-i (SCREEN 2)	1 🗆	2 🗆	3 🗆	4 🗆
You would accept without opposition	IF Definitely ACCEPT, Skip Q9a-ii and proceed to Q9b	IF Probably ACCEPT, Skip Q9a-ii and proceed to Q9b	IF Probably NOT, PROCEED TO Q9a-ii	IF DEFINITELY NOT, PROCEED TO Q9a-ii

The Scenarios:

- Baseline "Long term reliability of the electricity system can only be ensured by a bundle of measures, such as - but not exclusively - the construction of new power lines and pylons. Please imagine that your local government announced a large program of local infrastructure investments, contributing to the enhancement of the power grid in the whole of your country. As part of this program, during the next year a high-voltage power line with standard pylons would be built in your neighborhood. This power line (including pylons) would be up to 60 meters high and be built at a distance of 250 meters from your home."
- Economic Treatment (T1) This infrastructure program has significant benefits for your country's economy including, enhanced economic growth, especially in your region, resulting in the creation of new jobs and in greater independence from foreign energy supplies.
- Environment Treatment (T2) This infrastructure program has significant benefits for the environment and complements your country's measures to fight climate change - the strengthening of the national electric infrastructure being necessary for increased use of renewable energy sources, such as wind power.
- Community Treatment (T3) The government and electricity company would compensate you and your community by providing budget for measures to improve the quality of life in your neighborhood. Possible improvements could include the construction of recreational areas and parks, or equipment for local schools. All people living in the community would have the chance to determine how this extra budget should be used by popular vote.

Table : Country comparison of household-level variable means

	income (EUR)	male	age	college	posutil	negutil	satisfied	urban	yearsinhome	needgrids
France	26,378.14	0.43	46.26	0.44	0.52	0.05	0.95	0.31	13.39	0.28
Germany	25,098.13	0.55	47.22	0.40	0.60	0.05	0.98	0.25	16.79	0.67
Italy	20,871.99	0.49	47.49	0.30	0.49	0.07	0.93	0.34	19.88	0.46
UK	22,804.79	0.49	47.97	0.36	0.53	0.05	0.99	0.14	15.54	0.62
Austria	25,750.87	0.52	47.70	0.26	0.52	0.02	0.99	0.23	20.80	0.41
Belgium	25,470.36	0.51	47.94	0.48	0.47	0.09	0.94	0.37	15.30	0.32
Denmark	30,949.48	0.59	49.11	0.38	0.46	0.04	0.99	0.29	13.50	0.36
Finland	25,662.28	0.50	50.42	0.42	0.50	0.02	0.96	0.20	12.82	0.75
Netherlands	23,741.29	0.49	48.48	0.32	0.57	0.02	0.98	0.25	14.86	0.42
Spain	17,985.00	0.51	46.89	0.41	0.39	0.16	0.78	0.54	15.95	0.52
Sweden	23,445.57	0.54	47.27	0.40	0.48	0.02	0.97	0.25	11.53	0.60
Portugal	12,888.50	0.50	46.75	0.38	0.46	0.08	0.92	0.38	15.98	0.54
Ireland	28,462.07	0.53	47.93	0.35	0.56	0.04	0.98	0.14	16.03	0.58
Luxembourg	45,884.96	0.53	48.49	0.36	0.50	0.02	0.98	0.19	16.50	0.36
Bulgaria	4,144.83	0.45	47.02	0.62	0.30	0.16	0.75	0.63	24.39	0.65
Czech	9,104.07	0.47	48.67	0.32	0.45	0.04	0.96	0.29	21.97	0.53
Estonia	8,584.40	0.42	48.30	0.45	0.39	0.04	0.82	0.25	17.97	0.58
Hungary	5,090.22	0.49	48.95	0.29	0.51	0.07	0.94	0.20	23.36	0.62
Latvia	6,165.74	0.37	48.05	0.48	0.55	0.04	0.85	0.32	20.18	0.58
Lithuania	6,084.60	0.48	48.21	0.64	0.41	0.02	0.91	0.31	20.44	0.56
Poland	6,034.05	0.48	46.47	0.36	0.44	0.03	0.88	0.39	22.09	0.64
Romania	2,794.26	0.46	48.89	0.50	0.48	0.07	0.79	0.58	23.73	0.77
Slovakia	7,468.52	0.45	48.30	0.37	0.54	0.03	0.98	0.34	24.09	0.51
Greece	15,706.41	0.49	42.94	0.58	0.26	0.11	0.74	0.41	18.30	0.76
Cyprus	23,255.19	0.54	50.28	0.45	0.28	0.10	0.67	0.28	17.85	0.69
Slovenia	14,508.06	0.48	49.24	0.34	0.47	0.03	0.96	0.28	25.19	0.42
Malta	14,919.54	0.56	50.91	0.31	0.36	0.11	0.77	0.29	22.21	0.80
Average	17,750.12	0.49	48.00	0.41	0.46	0.06	0.90	0.31	18.54	0.56

