

Energiewende für Österreich!

Technische Optionen einer Vollversorgung für Österreich mit erneuerbaren Energien

13. Symposium Energieinnovation, 14.02.2014
TU Graz

Prof. Dr. Reinhold Christian

Umwelt Management Austria

gemeinnütziger Verein

Umweltschutz durch

- Erwachsenenbildung
- Forschung & Beratung
- Gesellschaftspolitik

Umwelt Management Austria

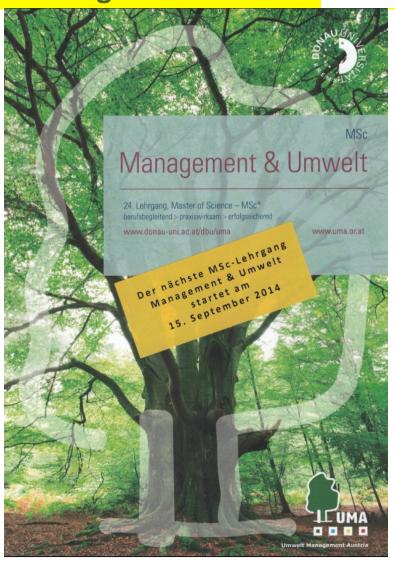
Umwelt- und Naturschutz

Aus- und Weiterbildung

Praxisnahe Forschung

Kompetente Beratung

www.uma.or.at



Erwachsenenbildung

Lehrgang:

Management & Umwelt

- Kostensenkung
- Risikominderung
- Wettbewerbsvorteile

Energieforschung

Energie der Zukunft

Programmverantwortung:
Bundesministerium für Verkehr, Innovation und Technologie und
Bundesministerium für Wirtschaft und Arbeit

Programmmanagement:Österreichische Forschungsförderungsgesellschaft mbH (FFG)

Energieautarkie für Österreich?

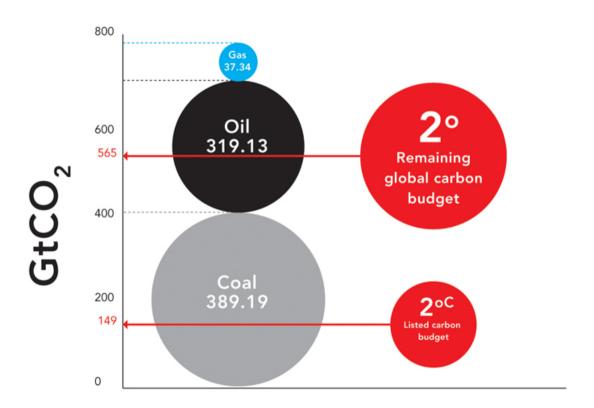
Kompaktfassung des Endberichts des Projekts

Zukunftsfähige Energieversorgung für Österreich

Gesellschaftliches Engagement

Prof. Dr. Reinhold Christian

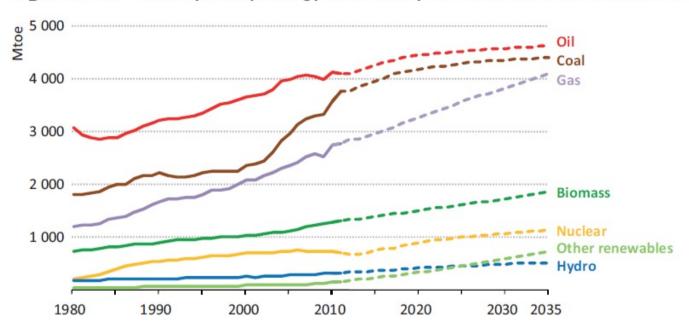
- Geschäftsführer Umwelt Management Austria
- Präsident Forum Wissenschaft & Umwelt
- "Energie 2030" (Wien 1984), die erste "Energiesparstudie" für Österreich
- Vorbereitung der Nationalparke Donauauen und Thayatal (1990 – 1995)
- Zukunftsfähige Energieversorgung für Österreich (ZEFÖ)
- Rechtsrahmen für eine Energiewende Österreichs (REWÖ)



Klimawandel und fossile Energieträger

Carbon dioxide emissions potential of listed fossil fuel reserves

Fig.3



World Energy Outlook 2013

Figure 2.5 > World primary energy demand by fuel in the New Policies Scenario

- Energiebedarf steigt (+ 33%)
- Anteil Fossiler sinkt (82% → 75%)
- → Verbrauch an Fossilen steigt!

Energieverbrauch Österreich

	Aufbringung	Importe	Exporte	BIV
Öl	41.217	646.162	114.058	573.321
Kohle	4	167.208	918	166.294
Gas	59.347	343.591	76.491	326.447
Biogas	1.000	0	0	1.000
Biomasse fest	163.000	9.595	21.351	151.244
Biomasse flüssig	0	1.486	0	1.486
Strom	0	98.495	42.965	55.530
Wasserkraft	129.200	0	0	129.200
Windkraft	4.600	0	0	4.600
Photovoltaik	200	0	0	200
Geothermie	0	0	0	0
industrielle Abwärme	0	0	0	0
Solarthermie	4.896	0	0	4.896
Wärmepumpe	4.691	0	0	4.691
SUMME	408.155	1.266.537	255.783	1.418.909

Tabelle 106: Inländische Aufbringung von Rohenergie [TJ], Importe [TJ], Exporte [TJ] und Bruttoinlandsverbrauch [TJ] im Basisjahr

Quelle: ZEFÖ Kompaktfassung, Seite 97 (

http://www.uma.or.at/assets/userFiles/downloads/Projekte/Kompaktfassung 23-05-2011.pdf)

Potenziale erneuerbarer Energie

	2005 [PJ]	2020 [PJ]	2050 [PJ]
Wasserkraft	140,0	144,2	152,3
Windkraft	4.0	26,0	61,0
Photovoltaik	4,8	9,0	94,5
Biomasse (Landwirtschaft)	164.0	80,0	205,0
Biomasse (Forstwirtschaft)	164,0	193,5	215,6
Solarthermie		27,0	90,0
Wärmepumpe		26,5	95,0
Industrielle Abwärme	9,8	4,1	12,0
Geothermie		0,0	7,4
SUMME	306,8	510,3	932,8

Quelle: Zukunftsfähige Energieversorgung für Österreich, Umwelt Management Austria, Wien 2010)

Bruttoinlandsverbrauch 2011 = 1427 PJ

Endenergieverbrauch 2011 = 1089 PJ

Der Bruttoinlandsverbrauch muss halbiert werden!

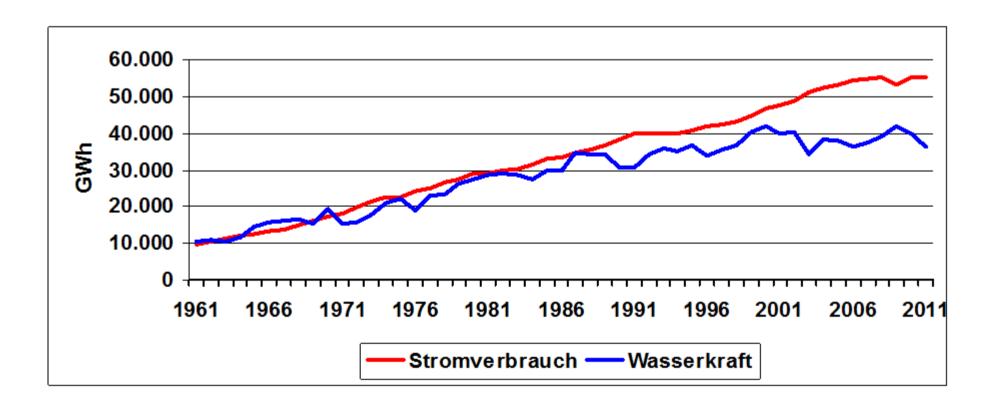
Energiewende für Österreich!

Prioritäten:

- 1. Vergeudung vermeiden ("Energie sparen")
- 2. Energieeffizienz
- 3. Erneuerbare Energieträger

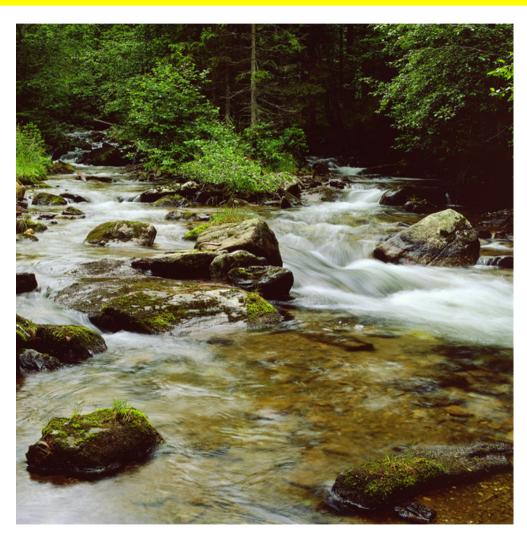
Methode:

- 1. Abschätzung der Potenziale Erneuerbarer
- 2. Entwicklung der Energiedienstleistungen der Zukunft
- 3. Berechnung des damit verbundenen Energieeinsatzes
 - im Rahmen von drei Szenarien
 - unter Berücksichtigung zweier Varianten der Bevölkerungsentwicklung
- 4. Verknüpfung von Aufkommen und Verbrauch
- Bewertung nach ökonomischen, ökologischen und sozialen Kriterien


	2005 [PJ]	2020 [PJ]	2050 [PJ]
Wasserkraft	140,0	144,2	152,3
Windkraft	4.0	26,0	61,0
Photovoltaik	4,8	9,0	94,5
Biomasse (Landwirtschaft)	164.0	80,0	205,0
Biomasse (Forstwirtschaft)	164,0	193,5	215,6
Solarthermie		27,0	90,0
Wärmepumpe		26,5	95,0
Industrielle Abwärme	9,8	4,1	12,0
Geothermie		0,0	7,4
SUMME	306,8	510,3	932,8

Quelle: Zukunftsfähige Energieversorgung für Österreich, Umwelt Management Austria, Wien 2010)

Wasserkraft – (k)eine Lösung



© WWF, Flüsse voller Leben

Schwarze Sulm (Erich Kump)

Energiewende für Österreich!

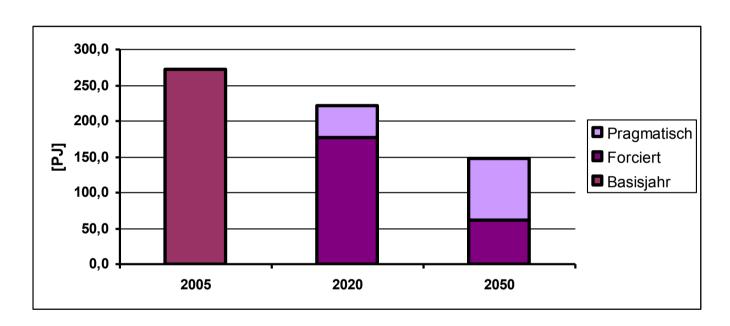
Maßnahmen erneuerbare Energie:

Wasserkraft: Ertüchtigung bestehender Kraftwerke, Ausbau an wenig erhaltenswerten Gewässerstrecken, ökologische Verbesserungen, Obergrenzen laut Potenzialtabelle

Windkraft: Zonierung von Ausschluss- und Eignungszonen; Kriterien: Siedlungen, Naturschutz, internationale Konventionen

Biomasse: integrierte Systeme, kaskadische Nutzungen

Photovoltaik: vorwiegend gebäudeintegrierte Lösungen, "Deckel" laut Potenzialtabelle (Aufhebung der aktuellen Deckelung im Ökostromgesetz)


- Wasserkraft ist weitgehend ausgebaut
- Windkraft: Zonierungen
- Flächenkonkurrenz Biomasse vermeiden

Frage: Vollversorgung mit erneuerbarer Energie auch mit Naturschutz möglich?

<u>private Haushalte – Endenergie</u>

		Pragmatisch		Forciert	
	2005	2020	2050	2020	2050
EE [PJ]	273	222	147	177	62

Bandbreite der Reduktion: 46 – 77%

<u>private Haushalte – Parameter (Auswahl) 2050:</u>

	Ausstattu	ngsgrade	mittlerer Verbrauch		
	2005	2050	2005	2050	
Elektroherd	91	100	449,3	100,0	
Waschmaschine	95	100	223,0	60,0	
Wäschetrockner	34	0	394,0	100,0	
Kaffeemaschine	95	100	100,0	40,0	
PC (inkl. Peripherie)	79	90	179,0	50,0	
Internetanschluss	48	65	60,5	28,0	
Heizwärmebedarf			146	20	

Quelle: Zukunftsfähige Energieversorgung für Österreich, Umwelt Management Austria, Wien 2010)

Energiewende für Österreich!

Maßnahmen Haushalte:

- Baunormen (Heizwärmebedarf)
- Verbrauchsnormen für Geräte
- Top-Runner Prinzip
- Beschränkungen (Wäschetrockner?)

<u>Dienstleistungsbereich – wichtigste Parameter:</u>

- thermische Sanierung Zielwerte HWB
- thermische Sanierung Sanierungsrate
- Anzahl der Beschäftigten
- Nutzfläche pro Beschäftigtem
- Effizienzfaktoren
- Ausstattungsgrade (indexiert, 2005 = 1)

Energiewende für Österreich!

Maßnahmen Dienstleistungsbereich:

- Effizienzregelungen
- Normvorgaben
- Branchenkonzepte
- siehe Haushalte

Sachgüterproduktion – wichtigste Parameter 2050:

		2005	Prag.	Forc.
_	Eisen und Stahl		±0	-5
Prod. E-einsatz (Zunahme in %)	Papier		+10	+20
(Zanamic m 70)	Holzverarbeitung		+20	+40
	Beleuchtung	5	25	30
Wirkungsgrade [%]	V-Motoren	30	35	40
[[70]	E-Motoren	80	85	90

Quelle: Zukunftsfähige Energieversorgung für Österreich, Umwelt Management Austria, Wien 2010)

Energiewende für Österreich!

Maßnahmen Sachgüterproduktion:

- Top-Runner Prinzip auch f
 ür Anlagen
- Einsparungsziele nach Branchenergiekonzepten
- Energiemanagement
- Kurz-, mittel- und langfristige Zielwerte festlegen
- Energiemanagement und professionelle Betreuung verpflichtend

Verankerung: Gewerbeordnung, Energieeffizienzgesetz

Wichtige Parameter im Sektor Mobilität im Jahr 2050

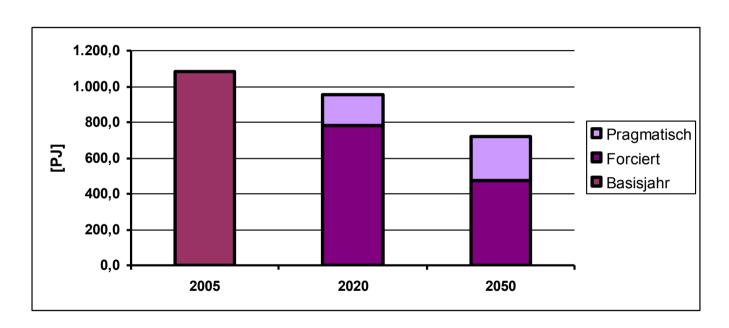
		Pragmatisch	Forciert
durchschnittliche Wegzahl		3,12	2,80
durahaahnittijaha Waglänga [km]	MIV	10,5	8
durchschnittliche Weglänge [km]	ÖV	7,7	6
	Fuß	17	20
Modal Split im Berufsverkehr	Rad	7	15
Wodar Spirt IIII Beruisverkeiii	MIV	22	3
	ÖV	54	62

Quelle: Zukunftsfähige Energieversorgung für Österreich, Umwelt Management Austria, Wien 2010)

Energiewende für Österreich!

Maßnahmen Verkehr:

- Vermeidung von Verkehr
- Verlagerung von Verkehr
- Verbesserung der Technik


energetischer Endverbrauch nach Nutzenergiekategorien:

		Pragmatisch		Ford	ciert
	2005	2020	2050	2020	2050
Traktion [PJ]	349	297	180	200	79
Raumwärme [PJ]	317	268	170	227	77
Beleuchtung & EDV [PJ]	33	18	15	13	9
elektrochemische Zwecke [PJ]	2	2	1	2	1
Dampferzeugung [PJ]	79	76	76	74	72
Industrieöfen [PJ]	148	147	137	132	115
Standmotoren [PJ]	155	147	144	131	118
energetischer Endverbrauch [PJ]	1.083	954	723	779	472

energetischer Endverbrauch:

		Pragmatisch		Ford	ciert
	2005	2020	2050	2020	2050
EE [PJ]	1.083	954	723	779	472

Bandbreite der Reduktion: 33 – 56%

Energieautarkie – Szenario Forciert:

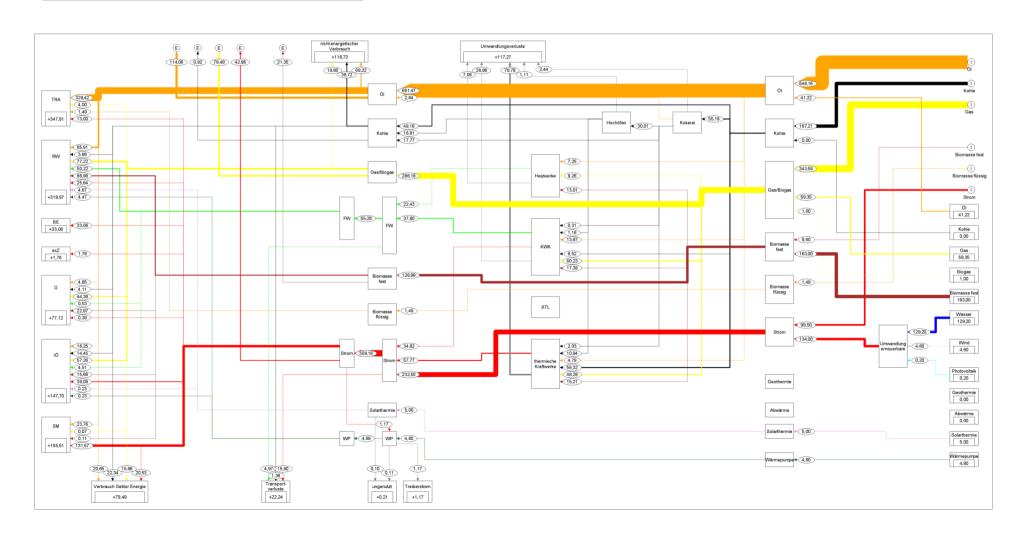
Import-Export-Tangente 2050:

~ -38 bis -73 PJ

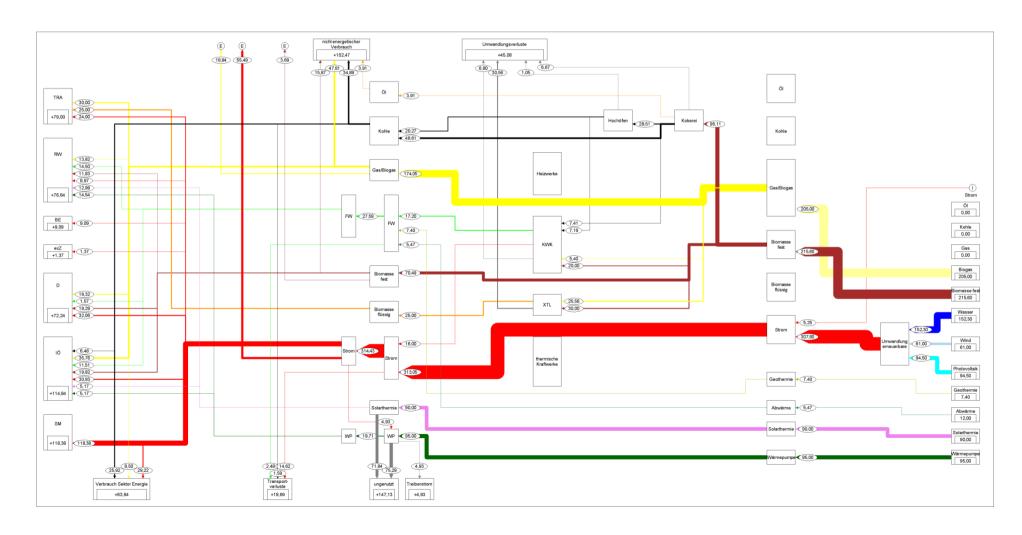
Anteil der inländischen Erzeugung am BIV:

105,1 bis 110,3%

Energieautarkie 2050 möglich


Problempunkte:

- Winterloch bei Strom
- Ersatz sämtlicher Verbrauche durch erneuerbare Energieträger


Flussbild – Basisjahr:

Flussbild - Szenario Forciert:

Rebound-Effekte

50 Jahre Käfer – 50 Jahre Fortschritt?

VW Käfer, BJ 1955, 730 kg, 30 PS, 110 km/h, 7,5 l/100 km

VW New Beetle, BJ 2005, 1200 kg, 75 PS, 160 km/h, 7,1 l/100 km

Wie der Fortschritt in Energieeffizienz regelmäßig "abprallt"

Quelle: Wuppertal Institut, 2007

Energiewende

Energiewende heißt Umstieg auf erneuerbare, klimafreundliche Energieformen wie Strom aus Wasserkraft. Davon hat Österreich schon heute einen hohen Anteil - und wir bauen ihn laufend aus. Mehr auf www.verbund.at

Energiewende für Österreich! Die Kyoto-Ziele haben wir verfehlt. Die Energiewende (noch) nicht!