

Considerations for an Innovative High Temperature Battery in Power Plant Applications

C.M. Berger, J. Geske, O. Tokariev, P. Orzessek, Q. Fang, N.H. Menzler, M. Bram, H.P. Buchkremer

13. Februar 2014 | EnInnov 2014, Graz

Inhalt

- 1) Überblick
- 2) Batterietechnologie
- 3) Materialauswahl und -entwicklung
- 4) Herstellungsverfahren und Herausforderungen
- 5) Zusammenfassung und Ausblick

Wasserstoffherstellung: Der Eisen-Dampf-Prozess

Eisen-Dampf-Reaktor , S. Hurst, Journal of Oil & Soap, 1939

Moderner Eisen-Dampf-Reaktor mit chemischer Zyklierung, Betrieb zwischen 500-800 °C

+ Hohe H₂-Reinheit– Dampfreformierung kosteneffizienter

Einführung in Solid Oxide Cells (SOC)

SOFC/SOEC – Solid Oxide Fuel Cell / Solid Oxide Electrolysis Cell Jülich F-Design, planar, anodengestützt, Betrieb bei 600-800 °C

Schutzschicht Stromsammler Kathode Interkonnektor Dichtung Rahmen Anodensubstrat Anode Elektrolyt Stromsammler

Stack

Planares Brennstoffzellendesign gemäß F. Wiener, Entwicklung eines Dichtungskonzepts mit elastischer Komponente für die oxidkeramische Brennstoffzelle SOFC, Doktorarbeit, 2006

<u>Zelle</u>

Kombination von Eisen-Dampf-Prozess UULICH und Brennstoffzelle ?

Eisen-Dampf-Prozess

SOFC/SOEC

Rechargeable Oxide Battery (ROB)

Umwandlung einer SOFC/SOEC in eine ROB

Rechargeable Oxide Battery – Sauerstoff-Ionen-Batterie

Schematische Darstellung einer **R**echargeable **O**xide **B**attery mit H_2/H_2O Shuttle, patentiert durch Huang et al.: US patent No. US 2011/0033769 A1

ROB Stack – Erster Aufbau

Jülich F-design Brennstoffzelle, Stack

Zelle Luftelektrode Elektrolyt Brennstoffelektrode Substrat Speichermaterial Interkonnektor

Querschnitt durch eine ROB

Mögliche Anwendungen

Theoretische Vorteile einer ROB

Warum Eisen? Betriebsbedingungen

Korrespondierender Sauerstoffpartialdruck verschiedener H_2O/H_2 -Verhältnisse als Funktion der reziproken Temperatur im Vergleich mit Dissoziationsdrücken ausgewählter Oxide, gerechnet mit Fact Sage

Fe + H₂O
$$\rightleftharpoons$$
 FeO + H₂
3FeO + H₂O \rightleftharpoons Fe₃O₄ + H₂
3Fe + 4H₂O \rightleftharpoons Fe₃O₄ + 4H₂

Weitere Kandidaten: W, Mo, Ge

Herstellung von Speichermaterialien

Extrudierte und gesinterte Bauteile (links) und Foliengegossene Bauteile nach Trocknung (rechts)

Herausforderungen? Oxidation und Reduktion von Eisen

Schematscher Ablauf des Redoxprozesses bei 800 °C

Oxidation limitiert durch die Eisen Diffusion durch entstandenes FeO

Reduktion limitiert durch den Gastransport durch entstandenes Fe

Reines Eisenoxid (Fe₂O₃)

Nach dem Sintern (900 °C, 5K/min, 3h an Luft)

Oxidierter Zustand (10. Halbzyklus) nach Oxidation in Ar+2% H_2 +7% H_2 O @800 °C

Reduzierter Zustand (1. Halbzyklus) , reduziert in Ar+2%H_2 @800 °C für 10 h

Reduzierter Zustand (11. Halbzyklus) nach Reduktion in Ar2%H₂ @800 °C

Eisenoxid stabilisiert mit ZrO₂

Nach dem Sintern (900 °C, 5K/min, 3h an Luft)

Oxidierter Zustand (10. Halbzyklus) nach Oxidation in Ar+2%H₂+7%H₂O @800 °C

Reduzierter Zustand (1. Halbzyklus) , reduziert in Ar+2%H₂ @800 °C für 10 h

Reduzierter Zustand (11. Halbzyklus) nach Reduktion in Ar2% H_2 @800 °C

Eisenoxid stabilisiert mit Calciumoxid

März 7, 2014

Einordnung Speichermaterialien

O.Tokariev et al., J. Power Sources, eingereicht Nov.13, Patent angemeldet

Batterietest mit foliengegossenen Speicherelementen aus Fe₂O₃ und CaCO₃

Ergebnisse eines Zwei-Zellen Stacks (Batterie) mit Speicherelementen aus Fe₂O₃ und CaCO₃ (CF-25-75), die bei 1000° gesintert wurden. Galvanostatischer Betrieb mit einer Stromdichte von j=150 mA/cm², Speicherausnutzung 60-80%. 2013

Speichernutzung 60-80 %

Zusammenfassung

- Speichermaterial auf Basis von Fe₂O₃ und CaO/CaCO₃
- CaCO₃ ist besser als CaO wegen
 - In-situ Porosität, kein hygroskopisches Verhalten
 - Einfacherer Herstellung und Handhabung
- Vielversprechende Ergebnisse mit CF-25-75 (CaFe₃O₅)
 - Niedrige Alterungsrate, gute Kapazität und Leistungsfähigkeit
- Herstellung mittels Foliengießen oder Extrusion
- Batterietest 150 mA/cm², 47 min pro Halb-Zyklus
 - 200 Zyklen im Batteriebetrieb nachgewiesen

Ausblick

- Weiterentwicklung des Speichers
- Besseres Verständnis der Alterungsphänomene
- Extrusion optimieren
- Design optimieren

Vielen Dank allen beteiligten Kollegen, die zu dieser Arbeit beitragen.

Das Projekt erhält Förderung durch das Bundesministerium für Bildung und Forschung unter der Nummer 03EK3017

Bundesministerium für Bildung und Forschung

Considerations for an Innovative High Temperature Battery in Power Plant Applications

C.M. Berger, J. Geske, O. Tokariev, P. Orzessek, Q. Fang, N.H. Menzler, M. Bram, H.P. Buchkremer

13. Februar 2014 | EnInnov 2014, Graz

Phasendiagramm FeO-CaO bei 800 °C

Phase Diagram FeO-CaO at 800°C calculated using FactSage software employing Databases FACTPS and FToxid

Reversible O²⁻-Speicherkapazität

Material	Th. Kapazität O ²⁻			
MoO ₃	33,3%			
GeO ₂	30,6%			
Fe ₃ O ₄	27,6%			
MoO ₂	25%			
CaFe ₃ O ₅	22,3%			
WO ₃	20,7%			
Fe ₃ O ₄ +8YSZ 70/30	18,5%			

 $3Fe + 4H_2O \leftrightarrow Fe_3O_4 + 4H_2$

3.34 wt.% H₂

H₂: 142 MJ/kg

→ Fe: 1340 Wh/kg
 → Fe + CaO: ≈1000 Wh/kg

Benchmarked backbone oxides

Material	Supplier	d ₁₀ -d ₉₀	
Fe_2O_3	Linux	1-20 µm	
8YSZ	UCM	0,5-1 µm	
8YSZ	Tosoh	0,2-0,5 µm	
5YSZ	Sulzer Metco	0,2-5 µm	
ZrO ₂	Atech	0,2-0,5 µm	
Y_2O_3	MaTeck	0,5-5 µm	
Y_2O_3	HC Starck	1,5-9 µm	
CeO ₂	Alfa	2-20 µm	
TiO ₂	Riedel-de-Haen	0,2-0,6 µm	
MgO	Sigma-Aldrich	0,1-0,3 µm	
Cr_2O_3	Merck	0,2-2 µm	
MgAl ₂ O ₃	FZJ	5-40 µm	
Mn ₃ O ₄	HC Starck	0,5-5 µm	
CuO	HC Starck	5-45 µm	
SiO ₂	Merck	100-200 µm	
AI_2O_3	-	0,2-2 µm	

Benchmarked oxides according to A.Hospach (incomplete)

Overview – Lithium-Ion and beyond

Table 1	heoretical (Th.) and approximate practical (Pr.) specific (Sp.) energies of rechargeable batteries (theoretical values based on the masses of	f
active el	rode-electrolyte materials only; practical values based on mass of battery pack) ^a	

System	Negative electrode	Positive electrode	$OCV^{b}(V)$	Th. Sp. Cap. (Ah kg ⁻¹)	Th. Sp. En. (Wh kg ⁻¹)	Pr. Sp. En. (Wh kg ⁻¹)
Lead-acid	Pb	PbO ₂	2.1	83	171	20-40
Ni-Cd	Cd	NiOOH	1.35	162	219	20-40
Ni-MH	MH alloy	NiOOH	1.35	~178	~240	50-70
Na-S (350 °C)	Na	S	2.1-1.78 (2.0)	377	754	~120
Na-MCl2 (300 °C)	Na	NiCl ₂	2.58	305	787	~90
Li-ion (1)	Li _x C ₆	Li1-xCoO2 (layered)	4.2-3.0 (3.7)	158 (for $x = 1.0$)	584	100-150
Li-ion (2)	Li_xC_6	Li1-xMn2O4 (spinel)	4.2-3.0 (4.0)	104 (for $x = 1.0$)	424	80-100
Li-ion (3)	Li _x C ₆	Li1-xFePO4 (olivine)	3.4 (3.4)	117 (for $x = 1.0$)	398	80-100
Li-ion (4)	Li ₄ T _{i5} O ₁₂	Li1-xMn2O4 (spinel)	2.5 (2.5)	80 (for $x = 1.0$)	200	50-70
Li-ion (5)	Li _x C ₆	Advanced spinel Li1-xMn1 sNi0 sO4	4.7 (4.7)	105 (for $x = 1.0$)	493	Not yet commercialized
Li-ion (6)	Li _x C ₆	Advanced layered Li1-xMO2 ^c	4.6-3.0 (3.7)	160 (for $x = 1.0$)	592	Not yet commercialized
Li-ion (7)	Li_ySi^d ($v_{max} \approx 4.2$)	Advanced layered	4.0-2.5 (3.2)	263 (for $x = 1.0$)	843	Not yet commercialized
Li-polymer (80-120 °C)	Li	LiV ₃ O ₈	3.3-2.0 (2.6)	~340	~884	~150 (Removed from market because of fires)
Li-S	Li	S	~2.0	584	~1168	Not yet commercialized
Li-O ₂	Li	O ₂	~3.0	584 (Li2O2), 897 (Li2O)	~1752-2691	Not yet commercialized

^{*a*} This table lists specific (gravimetric) energy densities only (Wh kg⁻¹). Volumetric energy densities (Wh l⁻¹) are equally important, particularly for transportation applications, but are not provided here for brevity. ^{*b*} OCV = open circuit voltage. Average values are provided in parentheses. ^{*c*} *e.g.*, LiMn_{0.67}Ni_{0.33}O₂ derived from $0.33Li_2MnO_3 \cdot 0.67LiMn_{0.5}Ni_{0.5}O_2$.⁷ ^{*d*} Li_ySi-carbon composite anodes are to be introduced by Panasonic in commercial Li-ion cells with conventional cathode materials in 2012.⁸

Thackeray et al. Energy Environ. Sci., 2012, 5, 7854