

The impact of second life applications of electric vehicle batteries on customer's mobility cost

Wolfgang Prüggler

Energy Economics Group

prueggler@eeg.tuwien.ac.at

Phone: +43 (0)1 58801-370369

Fax: +43 (0)1 58801-370397

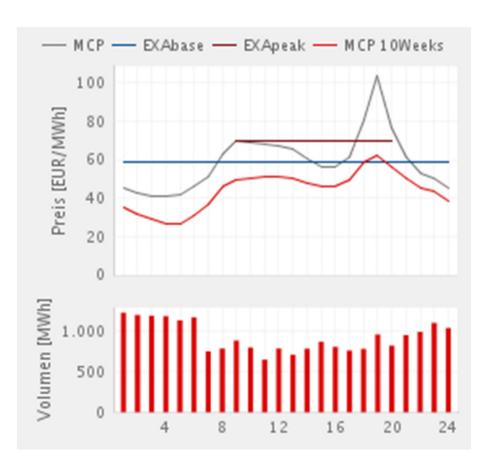
Outline

Second life applications for EV batteries

Data used

Methodology

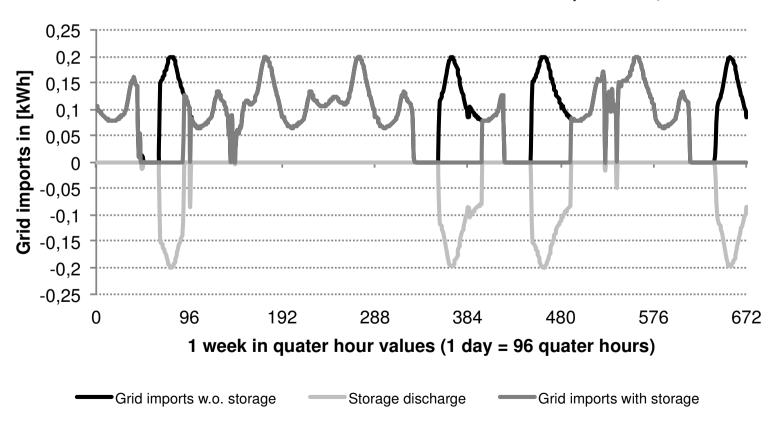
Application results and EV cost impacts


Conclusions

Second life applications for EV batteries

Electric Energy Time-shift

Quelle: www.exaa.at; Spot market


electricity. 02.02.2012

Residential Load Following

H0 profile 4 kW PV generation Battery 10 kW, 6 kWh

Data used

Battery assembling cost

Capacity of used batteries <= 80% of nominal value

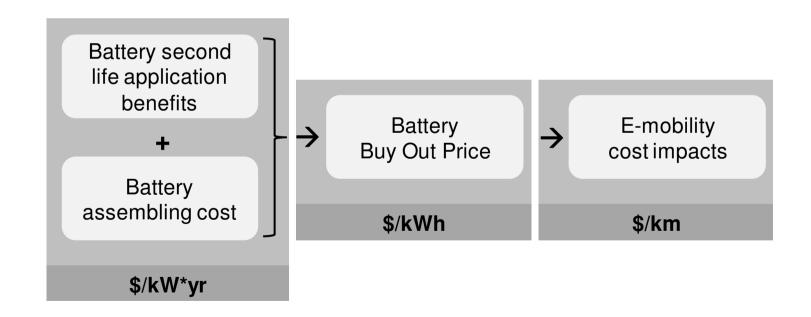
Data type	Unit	Electric Energy Time- shift	Residential Load Following	
Bat. Power	kW	10	10	
Bat. Capacity	kWh	6	6	
Battery life	yr	3,9	3,9	
Project duration	yr	20	20	
Battery purchases	-	6	6	
Interest rate	%	6	6	
Battery testing and packaging	\$/module	96	96	
BOS: Interface equipment, controls	\$/kW	122	122	
Operation and maintenance	\$/kW	124	124	

Source: Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications, Sandia National Laboratories, Albuquerque, NM: 2002

E-mobility cost data

Data type	Variable name	Nissan Leaf (compact class)	Mitsubishi I-MiEV (compact class)	CODA Sedan (middle class)	Sources (see full paper)
Purchase price	$\mathrm{EV}_{\mathrm{cc}}$	32,780 \$	42,160 \$ (price in Japan) 30,000 \$ (price goal in US)	44,900 \$	[17], [18], [20]
Federal Tax Credit	TC	7,500 \$	7,500 \$	7,500 \$	[5]
EV resale value	RV	5,000 \$	5,000 \$	7,000 \$	assumption
Interest rate	r	6%	6%	6%	assumption
EV battery capacity	$\mathrm{EV}_{\mathrm{Cap}}$	24 kWh	16 kWh	33.8 kWh	[17], [19], [21]
Vehicle range per charge	-	160 km	130 km	160 km	[17], [19], [21]
Year of car return	V_{c}	6	6	6	assumption
Electricity cost of EV	RC_{EV}	0.015 \$/km	0.012 \$/km	0.021 \$/km	Calculated at an electricity price of 0.1 \$/kWh

Conventional cars cost data


Data type	Variable name	Gasoline compact class car	Gasoline middle class car	Source (see full paper)
Purchase price	$\mathrm{EV}_{\mathrm{cc}}$	14,8 k\$ 25 k\$		[22]
EV resale value	RV	5,000 \$	7,000 \$ assumption	
Interest rate	r	6%	6%	assumption
Fuel consumption per 100 km	-	6 litre	7.5 litre	[22]
Year of car return	V_{c}	6	6	assumption
Fuel cost of EV	RC_{EV}	0.044 \$/km	0.055 \$/km	Calculated at an average fuel price of 0.73 \$/litre

Methodology

Overview

Electric Energy Time-shift

For an Electric Energy Time-shift battery application case the yearly benefits B_{Ts} calculate to

$$B_{TS} = -\frac{C_{ch} - R_D}{NP_{Bat,TS}}$$

$$= -\frac{\sum_{d=1}^{365} \sum_{h=2}^{6} p_{d,h} * q_{d,h} - \eta * (\sum_{d=1}^{365} \sum_{h=12}^{13} p_{d,h} * q_{d,h} + \sum_{d=1}^{365} \sum_{h=19}^{20} p_{d,h} * q_{d,h})}{NP_{Bat,TS}}$$
(1)

with

B_{Ts}	Yearly benefits of Ele	Yearly benefits of Electric Energy Time-Shift		
C_{Ch}	Yearly charging cost	[\$/yr]		
R_{D}	Yearly discharging re	venues	[\$/yr]	
NP _{Bat,Ts}	Nominal power of bat	ttery storage for Time-shif	t application	[kW]
p	electricity price	[€/kWh]		
q	quantity of sold or purchased electricity		[kWh]	
d	day of the year	[1/yr]		
η	storage efficiency	[%]		
h	hour of the day	[1/d].		

Residential Load Following

Yearly benefits of Residential Load Following applications including payments from the grid operator for reduced grid losses (L_T) are calculated by

$$B_{RLF} = \frac{R_{rg}}{NP_{Bat,LF}} + L_r = \frac{\eta * \sum_{i=1}^{n} q_i * IT}{NP_{Bat,LF}} + L_r$$
 (2)

with

B_{RLF} Yearly benefits of Residential Load Following

[\$/kW*yr]

R_{rg} Revenues for residentially generated and used electricity

[\$/yr]

L_r Grid loss reduction due to local energy storage

[\$/kW*yr]

q Quantity of stored and later used electricity

[kWh]

IT Incentive tariff for own electricity use

[\$/kWh]

i Number of discharging event

[1]

NP_{Bat,LF} Nominal power of battery storage for load following application [kW].

Net Present Value of battery module purchases

For a given number of modules m, a dedicated project lifetime of P_{lt} and a specific battery pack lifetime (depending on yearly usage) the following Net Present Value of the battery storage system can be calculated (including reinvestments for depleted battery packs) by

$$NPV_{Bat} = \left(C_{t\&p} + C_{pack}\right) * \left(\frac{1}{(1+r)^0} + \frac{1}{(1+r)^a} + \frac{1}{(1+r)^b} + \dots + \frac{1}{(1+r)^z}\right)$$

$$= \left(C_{t\&p} + C_{pack}\right) * Rf_{Bat}$$
(5)

with

r

NPV_{Bat} Net Present Value of Battery

[\$]

 $C_{t\&p}$ Total cost of battery testing and packaging

[\$]

C_{pack} Total cost of necessary battery packs (used to calculate battery Buy Out Price – see equation (8))

[\$]

a,b, ... z Year of battery replacement

[1]

Interest rate

[%]

 Rf_{Bat} Repurchase factor for battery system

[1].

Overall battery system cost (incl. BOS)

In order to calculate overall battery system cost (B_{SC}) the following equation has to be considered

to calculate overall battery system cost (
$$B_{SC}$$
) the following equation has to be considered
$$B_{SC} = \frac{(NPV_{Bat} + BOS_{Bat}) * \alpha + C_{O\&M,Bat}}{NP_{Bat}}$$

$$= \frac{\left((C_{t\&p} + C_{pack}) * Rf_{Bat} + BOS_{Bat}\right) * \alpha_{BS} + C_{O\&M,Bat}}{NP_{Bat}}$$
(6)

with

Overall battery system cost B_{sc}

[\$/kW*yr]

BOS_{Bat}

Balance of System cost for battery storage system [\$]

 $\alpha_{\rm BS}$

Annuity factor for battery system

[1/yr]

C_{O&M.Bat.}

Overall battery system Operation and Maintenance cost

[\$/yr]

 NP_{Bat}

Nominal power of battery storage system

[kW]

Battery Buy Out Price

$$B_{SC} = B_{RLF} v B_{Ts}$$

Out of equation (6) and a given overall battery system cost, which in the case of this paper are represented by the overall benefits of battery second life applications (B_{Ts} B_{RLF} compare section 2), the cost for the battery pack (solely the used battery modules out of EVs) are given by

$$C_{pack} = \frac{(B_{SC} * NP_{Bat} - C_{O\&M,Bat}) - \alpha_{BS} * BOS_{Bat}}{\alpha * Rf_{Bat}} - C_{t\&p}$$

$$(7)$$

As a consequence, the Buy Out Price referred to the battery system capacity (in kWh) is then represented by

$$B_{OP} = \frac{C_{pack}}{S_{Cap}} \tag{8}$$

with

 B_{OP} Buy Out Price for electric vehicles batteries [\$/kWh]

 S_{Cap} Total battery storage capacity [kWh]

EV cost impacts

Customer's EV related mobility cost taking into account case specific Buy Out Prices are given by

$$MC = \frac{\alpha_{EV} * \left(EV_{cc} - TC - \frac{RV}{(1+r)^{Vc}} - \frac{(EV_{Cap} * B_{OP})}{(1+r)^{Vc}} \right)}{D_d} + RC_{EV}$$
(9)

whereas

MC Cost of electric mobility for customers

[\$/km]

 $\alpha_{\rm EV}$ Annuity factor for electric vehicle

[1/yr]

EV_{cc} Electric vehicle purchase price

[\$]

TC Total tax credit for EV

[\$]

RV Rest value of vehicle when returned to dealer after V_c years

[\$]

r Interest rate

[%]

V_c Year in which car is returned to car dealer and batteries first circle ends

EV_{Cap} Electricity storage capacity of EV battery

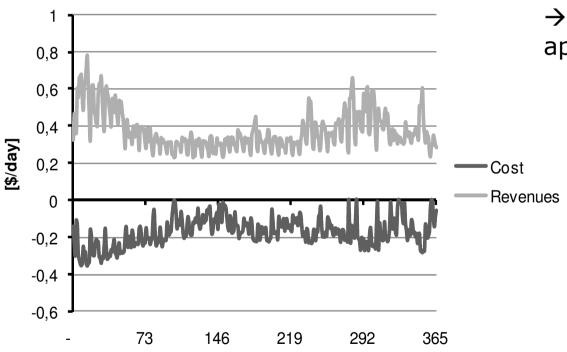
[kWh]

RC_{EV} Running cost for fuel of electric vehicle

[\$/km]

 D_d

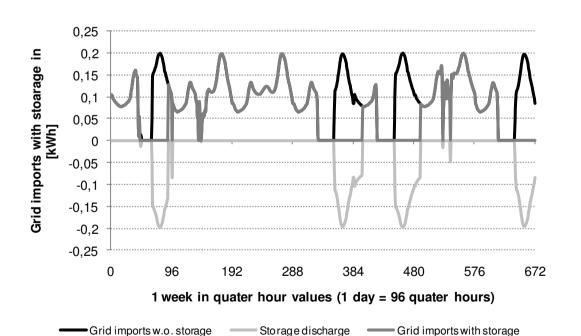
Distance driven per year


[km/yr]

Application Results

Electric energy time shift

Benefits of 5.4 \$/kW*yr are calculated for the case study

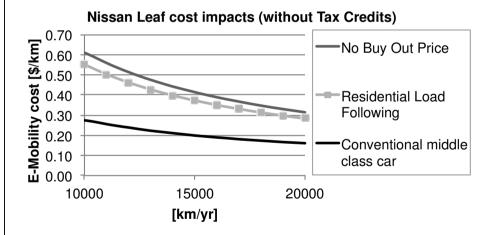

→ Not a feasible application

Application Results

Residential Load-Following

Benefits of 76.4 \$/kW*yr are calculated for the case study

→ Max. Buy Out Price calculates to approx. 180 \$/kWh (battery capacity)



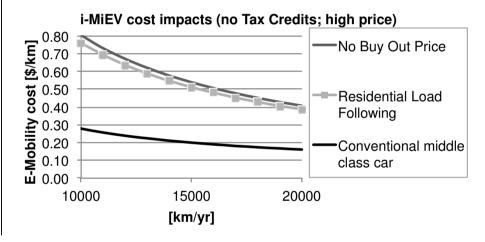

EV cost impacts

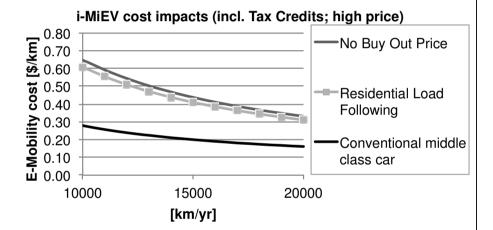
"Nissan Leaf"

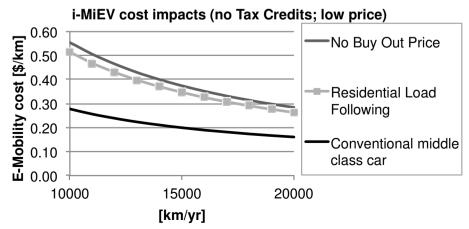
13% cost reduction if 10.000 km/yr are driven (incl. Tax Credit)

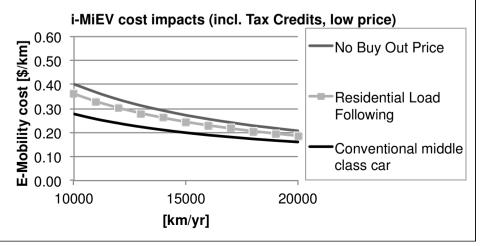
Nissan Leaf cost impacts (incl. Tax Credits)

Gap of about 5 c\$/km if 20.000 km/yr are driven (incl. Tax Credit)

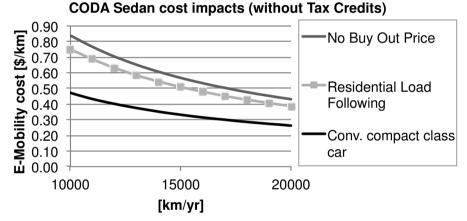




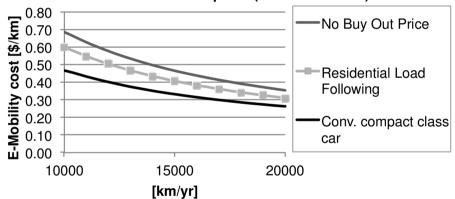

EV cost impacts


"", iMiev" (EV cost = 42 k\$ vs. 30 k\$)

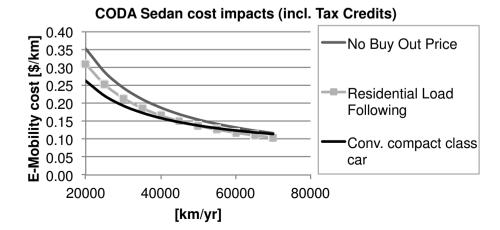
6.3% to 8.9% cost reduction if 10.000 km/yr are driven (incl. Tax Credit)



EV cost impacts


"Coda Sedan"

CODA Codon cost immedia (with out Tou One dita)



12.7% cost reduction if 10.000 km/yr are driven (incl. Tax Credit)

CODA Sedan cost impacts (incl. Tax Credits)

Cost become equal at about 50.000 km of yearly usage

Conclusions I

- Electric Energy Time-shifting is not feasible; benefits (5.4 \$/kW*yr) are lower than battery assembling cost (even if only incremental inverter cost are assumed)
- Residential Load Following may derive benefits of 76.4/kW*yr.
 Buy Out Prices approx. 180 \$/kWh (if incremental inverter cost are assumed)
- Technological feasibility (e.g. battery degradation, achievable charging cycles) of battery reuse still needs to be demonstrated

Conclusions II

- Nissan Leaf, Mitsubishi i-MiEV and CODA Sedan mobility cost reduced up to 13% by applying battery Buy Out Prices
- The higher the yearly driven EV kilometres the lower the gap between EV and conventional cars
- BUT: currently 50.000 km/yr needed for Coda Sedan case = unlikely to happen
- At current EV cost: Only if very high Buy Out Prices are achieved (e.g. in other 2nd life applications), the necessity of subsidies (e.g. Tax Credits) could be reduced

Discussion

