Forschen

Prüfen

Lehren

Staatliche Versuchsanstalt – TGM

Kunststoff- und Umwelttechnik

Federal Testing Center – TGM, Department of Plastics Technology and Environmental Engineering

- 1879 Gründung des TGM (Technisches Gewerbemuseum, heute Technologisches Gewerbemuseum) Österreichs erste und heute traditionsreichste Höhere Technische Lehr- und Versuchsanstalt.
- 1957 Die Versuchsanstalt für Kunststofftechnik wird errichtet und gleichzeitig das Laboratorium für Kunststofftechnik LKT-TGM gegründet.
- 1975 Die Versuchsanstalt für Chemie und Kunststoffe wird staatlich autorisiert. Die chemische Versuchsanstalt wird aufgelassen und in die VA für Kunststofftechnik integriert.
- 2004 Der Fachbereich Kunststoff- und Umwelttechnik an der Staatlichen Versuchsanstalt TGM ist heute international tätig und Partner zahlreicher europäischer Prüfstellen. Das Dienstleistungsangebot wird ständig dem aktuellen Bedarf angepasst.

Rohre, Rohrzubehör, Rohrleitungen, Fittinge, Ventile, Armaturen, Flansche, Muffen und andere Rohrleitungsteile

Zünd- und Brennverhalten
(Feuerfestigkeit) von
Baustoffen und -elementen

Hilfs- und Zusatzstoffe für Kunststoffe, Gummi, Elastomere, Duroplaste, Thermoplaste, Schaumstoffe

Ausfertigung von Prüf- und Überwachungsberichten, z.B. gemäß "ÖNORM geprüft", ON-CERT, GRIS, ÖVGW, DVGW, SVGW, Austria Gütezeichen, OIB-Richtlinien

> Deponietechnische Untersuchungen und Produkte, Geotextilien, Deponieund Verdachtsflächenbeurteilungen

Energie 1: Woher

Von der Sonne

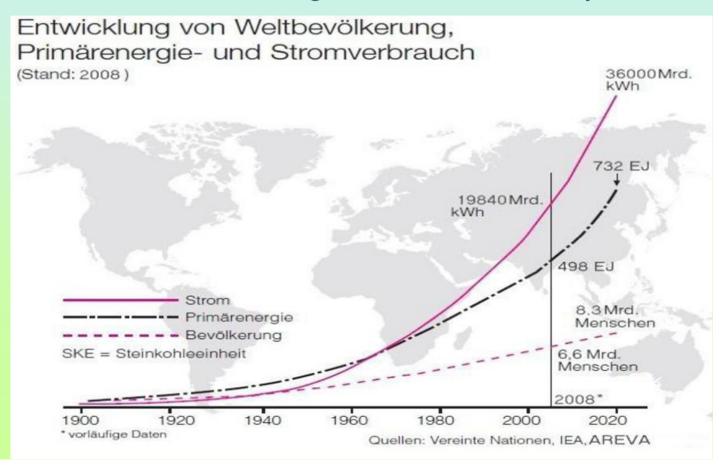
Energie 2: Ergebnis

Biomasse!!

- ➤ Theoretisches Nutzungspotenzial der weltweiten Land-Biomasse (= Phytomasse) flächenbasiert [1]
 - 10 Mio. km² landwirtschaftliche Nutzflächen
 - 40 Mio. km² Waldflächen
 - 49 Mio. km² Wüstengebiete (arid, semi-arid)
- > Theoretisches Nutzungspotenzial der jährlichen Photosyntheseleistung an Trockenmasse weltweit

220 Mia. t

Davon Wald: 170 Mia. t



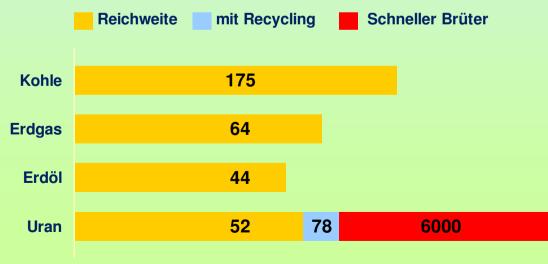
Energieproblem 1:

Warum haben wir überhaupt eines?

1. Wir brauchen immer mehr Energie bei zunehmender Population

Energieproblem 2

Warum haben wir überhaupt eines?


2. Die fossilen Primärenergieträger gehen zur Neige

Prognostik: Primärenergiebedarf steigt bis 2030 um ca. 45 %

Wirtschaftswachstum nimmt jährlich um 1,6 % zu

Entwicklungsländer brauchen noch 120 Jahre

Reichweite der Ressourcen

Jahre

Energieproblem 3

Was tun?

Substitution fossiler Energieträger

Energiequellen

nicht erneuerbare	alternative	erneuerbare
Kohle	Sonne	nachwachsende Rohstoffe
Öl	Wind	
Gas	Wasserkraft	
Kernspaltung*	Geothermie	
	Kernfusion	
* Wiederaufbereitung Schnelle Brüter		

Definition:

Alternative Energiequellen:

Natürlicher Kreislauf – entzieht sich dem obligaten Einfluss menschlicher Willkür zur planmäßigen, regenerativen Bewirtschaftung.

Erneuerbare Energiequellen:

Durch menschliche Willkür periodischer und planbarer Ertrag nachwachsender Rohstoffe oder natürliche Sukzession (Wald).

Eigenschaften fossil-substituierender Energieträger

- > Transport- und Lagerfähigkeit
- Energie in gebundener Form
- > Bildung ausreichender Vorkommen
- Nach dem Stand der Technik wirtschaftlich vertretbare Exploration
- Verfügbarkeit zu einem akzeptablen Preis

Diese Eigenschaften erfüllen explizit nachwachsende Rohstoffe!

Definition "Nachwachsende Rohstoffe":

Durch Photosynthese gebildete feste Biomasse (= Phytomasse), die wirtschaftlich genutzt werden kann.

Biomasse

- Halmgutartige Biomasse
- Holzartige Biomasse (= lignocellulosehaltig)

Produktionsertrag

t / ha und Jahr

Chemisch gebundene Energie

- Kalorische Größenangabe in MJ / kg
- Nutzung durch Konversion in die Endenergien Arbeit und Wärme

Vorteile lignocellulosehaltiger Biomasse:

Bereitstellung durch nachhaltige Forst- und Landwirtschaft

Potenziale:

Wald

Jährliche Photosyntheseleistung zusätzliche Aufforstung

Landwirtschaft

Kurzumtriebsplantagen (KUP)

Sind Anpflanzungen schnellwachsender Baumarten (Pappeln, Weiden, Robinien), die in kurzen Produktionszeiträumen hohe Erträge liefern.

Kurzumtriebsplantagen (KUP)

➤ Umtriebszeit: 2 – 5 Jahre

Nutzung: bis zu 25 Jahre

> Flächen: landwirtschaftliche Flächen

➤ Zuwachs: 7 – 20 Tonnen TM pro Hektar und Jahr

> Pflanzdichte: 8.000 – 16.000 Bäume pro Hektar

> Baumarten: Pappel, Weide, Robinie

Pappel-Stecklinge

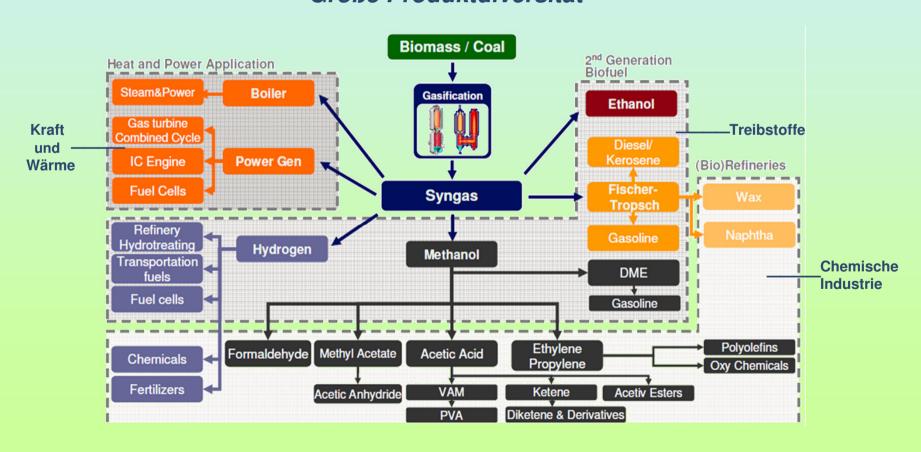
Pflanzung – die Ruten werden automatisch auf 20 cm geschnitten

Nach 6 Monaten

Ernte in vegetationsfreier Periode

Neuer Austrieb im Frühjahr

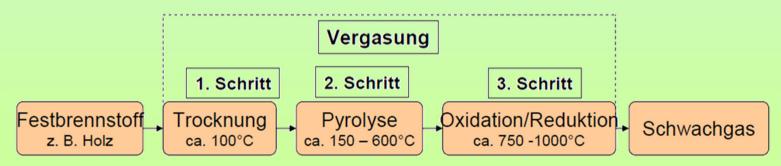
Stand der Technik für die energetische Nutzung von lignocelluloshaltiger Biomasse


- Verbrennung
- > Pyrolyse
- Thermische Vergasung:
 - Brennstoffausnutzungsgrad > 80 %
 - Input- und Produktdiversität
 - Eignung für dezentrale Energiesysteme
 - Hohe regionale und kommunale Wertschöpfung (z.B. Güssing)
 - Niedrige Emissionen und ausgeglichene Ökobilanz

Thermische Vergasung:

Große Produktdiversität

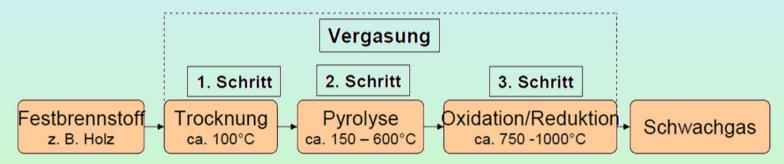
Thermische Vergasung:


Flüchtige Brennstoffbestandteile → Produktgas

Reforming (mit Wasserdampf)

$$CH_4 + H_2O \stackrel{\leftarrow}{\rightarrow} CO + 3 H_2$$

Wassergas-Shift-Reaktion


$$CO + H_2O \stackrel{\leftarrow}{\rightarrow} CO_2 + H_2$$

Thermische Vergasung:

Trocknung: Wasserverdampfung und Aufheizen der

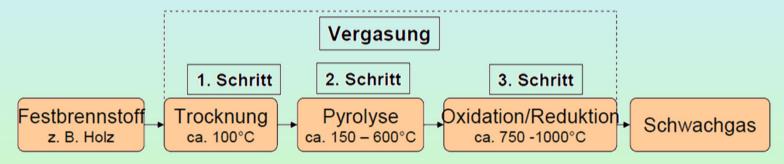
Brennstoffpartikel → geschwindigkeitsbestimmender

Schritt

Pyrolyse: ab 250 °C: Depolymerisation,

ab 350 °C: Ausgasen von CH₄ und niedermolekularen

Kohlenwasserstoffen (KWs),

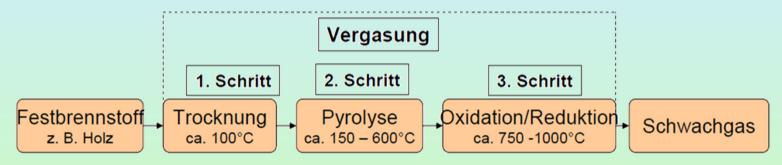

ab 600°C: Lignincrackung → "Teere" (Benzol,

Naphtalin u.a.)

Thermische Vergasung:

Vergasung: ab 700 ℃

Restkoks: partielle Oxidation und Vergasung des Kohlenstoffes zu H₂ und CH₄ → heterogene Vergasung.


Kohlenwasserstoffe: Umsetzung zu H_2 und $CO \rightarrow$ homogene Vergasung. Einstellung eines druck- und temperaturabhängigen Gleichgewichtsverteilung von H_2 , CO, CH_4 im Produktgas (= Syngas).

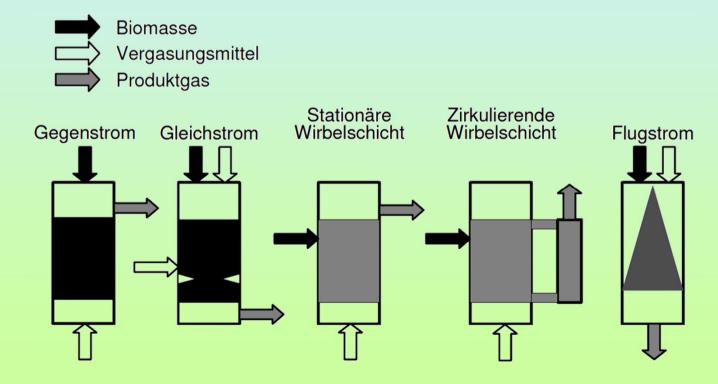
Reforming und Wassergas-Shift-Reaktion: Verlagerung des Gleichgewichtes zugunsten eines hohen H₂-Anteils.

Thermische Vergasung:

Reinigung: Vor allem Reduktion des Teergehaltes, des Schwefelgehaltes, NH₃-Gehaltes und Staubanteils.

Staubfilter, Druckwechseladsorber (PSA), Gaswäsche mit organischem Lösungsmittel z. B. RME (Rapsmethylester)

Produkt: wasserstoffreiches Produktgas (= Syngas) mit


 $H_{II} = 12 \text{ bis } 14 \text{ MJ} / \text{m}^3$

Thermische Vergasung: Einteilung nach

> Vergasertypen

Grafik: Dr. Tilman Schildhauer, Paul Scherrer Institut

Thermische Vergasung: Einteilung nach

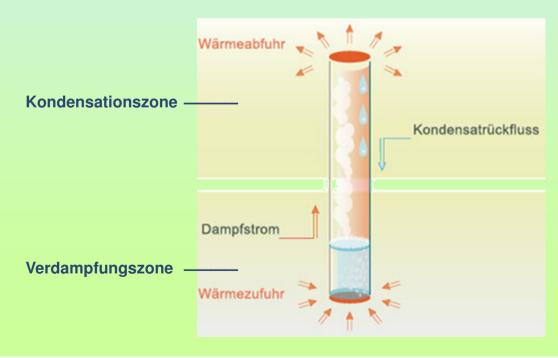
- Wärmebereitstellung
- Autotherm

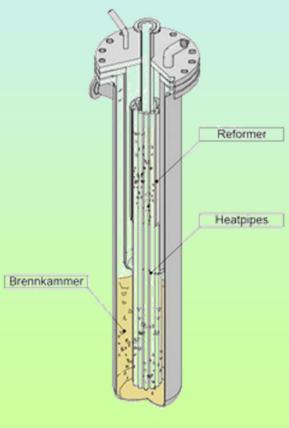
Partielle Brennstoffoxidation, exotherme Vergasungsreaktionen Vergasungsmittel: Luft- O_2 ; $0.2 < \lambda < 0.6$

o Allotherm

Vergasungsmittel: Wasserdampf

- Wärmeintrag mit heißem Bettmaterial (Quarzsand, Olivin)
- Indirekte Beheizung mit Heat-Pipes
 Sättigungsgleichgewicht des flüssigen Mediums mit seinem Dampf in geschlossenen Rohren durch Wärmezufuhr an einem, Wärmeentzug am anderen Ende → Einstellung konstanter Betriebstemperatur



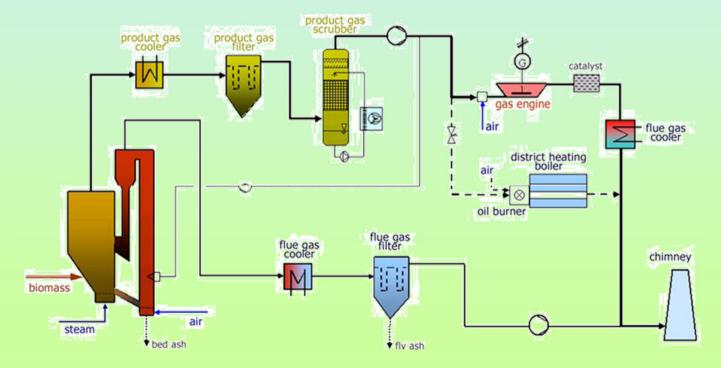


Thermische Vergasung: Einteilung nach

Wärmebereitstellung

- > Allotherm
 - Indirekte Beheizung mit Heat-Pipes

Grafik: Agnion GmbH



Realisierte Anlagenkonzepte 1

Biomassekraftwerk Güssing, (Burgenland, Österreich)

FICFB-Wirbelschichtverfahren

Realisierte Anlagenkonzepte 1

Biomassekraftwerk Güssing, (Burgenland, Österreich)

FICFB-Wirbelschichtverfahren

- > Verfahrensmerkmale
 - Trennung des Wirbelschichtbettes in eine Vergasungs- und Verbrennungszone
 - Verwendung von Wasserdampf als Vergasungsmedium
 - Entstehende Reststoffe wie Teere und Wasser werden wieder in die Brennkammer rezirkuliert – keine Abfälle aus der Gasreinigung.
 - Produktgas betreibt Gasmotor zur Stromerzeugung
 - Nutzung der Prozesswärme als Fernwärme

Realisierte Anlagenkonzepte 1

Biomassekraftwerk Güssing, (Burgenland, Österreich)

FICFB-Wirbelschichtverfahren

> Leistungsparameter

Brennstoffwärmeleistung: 8 MW_{th}

Elektrische Leistung:
 2 MW_{el} η_{el}: 25 %

Nutzwärmeleistung: 4,5 MW_{th} η_{ges}: 82 %

Jahresproduktion:

Strom: 16 GWh / a Wärme: 36 GWh / a

Betriebsstunden: 8.000 h / a Biomassebedarf: 14.400 t / a



Realisierte Anlagenkonzepte 2

Beta-Anlage Freiberg (Fa. CHOREN, Thüringen, Deutschland)

Carbo-V-Verfahren

Realisierte Anlagenkonzepte 2

Beta-Anlage Freiberg (Fa. CHOREN, Thüringen, Deutschland)

Carbo-V-Verfahren

> Verfahrensmerkmale

Dreistufiges Verfahren: Niedertemperaturvergasung 400 – 500 °C
 Hochtemperaturvergasung 1.400 °C

Flugstromvergasung

800 °C

- Erzeugung teerfreien Gases
- Universelles Vergasungsverfahren für sämtliche kohlenstoffhältige Stoffe
- Verfahren v.a. für Syntheseprodukte im nachgeschalteten Fischer-Tropsch-Reaktor (BTL-Kraftstoffe *SunFuel*)

Realisierte Anlagenkonzepte 2

Beta-Anlage Freiberg (Fa. CHOREN, Thüringen, Deutschland)

Carbo-V-Verfahren

> Leistungsparameter

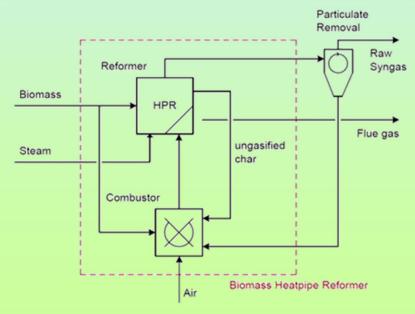
45 MW thermal

65,000 t/a feedstock

18.0 mio. I SunFuel

- Alpha-Plant
- Biomass storage (wood chips)
- 3 Carbo-V® Gasifier
- Power station
- Fischer-Tropschsynthesis
- 6 Tank farm

Bild: CHOREN Industries GmbH



Realisierte Anlagenkonzepte 3

Heat-Pipe-Reformer Pfaffenhofen (Fa. Agnion, Bayern, Deutschland)

Heat-Pipe-Reformer - Schaltbild

Grafik: Institut für Energietechnik und Thermodynamik; TU Wien

Realisierte Anlagenkonzepte 3

Heat-Pipe-Reformer Pfaffenhofen (Fa. Agnion, Bayern, Deutschland)

Heat-Pipe-Reformer

- > Verfahrensmerkmale
 - Wirbelschicht und Vergasung in kompakter Bauweise
 - Vergasungsmedium: Wasserdampf
 - Produktgas betreibt Gasmotor zur Stromerzeugung
 - Nutzung der Prozesswärme als Fernwärme
 - Hoher Wirkungsgrad durch die Nutzung der Kondensationswärme des Wasserdampfes (= hohe Energiestromdichte)

Realisierte Anlagenkonzepte 3

Heat-Pipe-Reformer Pfaffenhofen (Fa. Agnion, Bayern, Deutschland)

Heat-Pipe-Reformer

> Leistungsmerkmale

Rückgrat dezentraler Energiesysteme

- Biomasse und zukünftig auch Müll liefern mittels thermischer Vergasung
 - Treibstoff
 - Strom
 - Wärme
 - Grundstoffe der chemischen Industrie

Alles aus einer Hand!

- ▶ Bereitstellung von Reservekapazitäten, wenn Lastverhalten und bereitgestellte alternativ erzeugte Endenergie nicht zur Deckung kommen → Sicherung der Netzstabilität
- Wertschöpfung bleibt in der Region

Herzlichen Dank für Ihre

Aufmerksamkeit