



# Auswirkungen des technischen Fortschritts sowie aktueller Richtlinien und Gesetze auf den Standby-Verbrauch in Österreich

Dipl.-Ing. Dr. Ernst Schmautzer
Dipl.-Ing. Christian Elbe
Univ.-Prof. Dr. Lothar Fickert

Technische Universität Graz
Institut für Elektrische Anlagen





#### Inhalt

- Vorbemerkungen
- Gesamtstromverbrauch in Österreich
- Gesetze und Richtlinien
- Entwicklung des Standby-Verbrauchs in Österreich

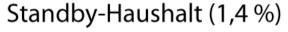


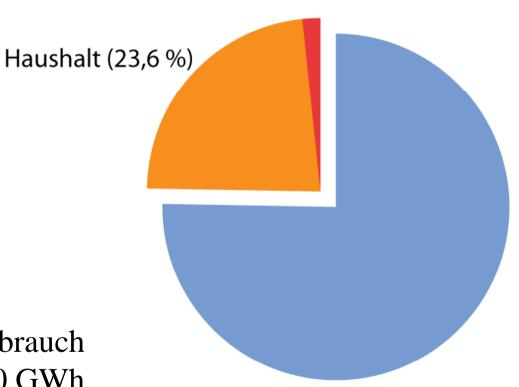


#### Vorbemerkungen

#### Was ist Standby?

- Ausführung keiner Hauptfunktion
- Niedrigster Energieverbrauch
- Leerlaufmodus ohne Verwendung Hauptfunktion
- Rahmenrichtlinie für weitere Durchführungsmaßnahmen


#### Was ist Off-Mode?


- Scheinausbetrieb
- Keine Funktionsausführung

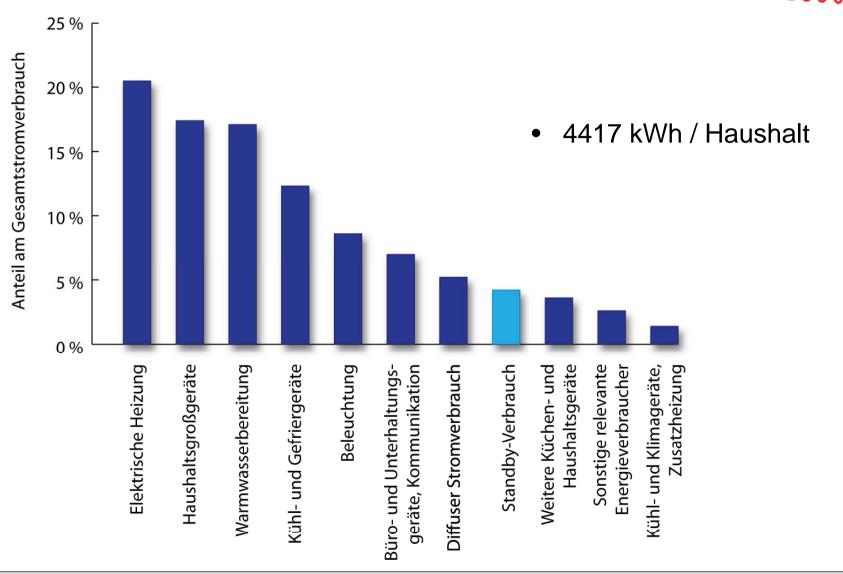




## Gesamtstromverbrauch in Österreich (1)





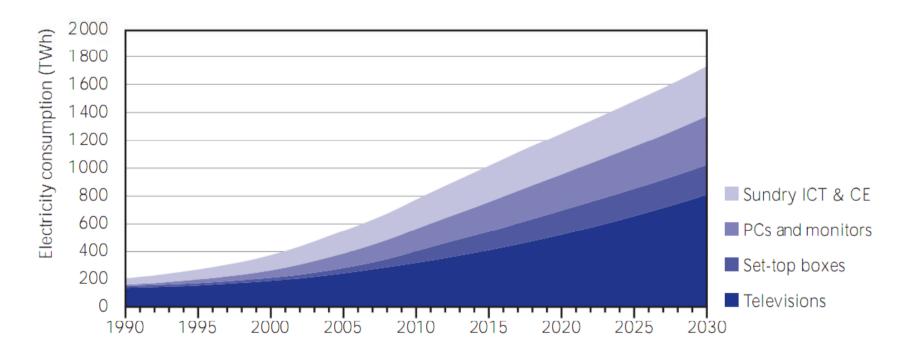

Gesamtstromverbrauch ca. 57.000 GWh

Sonstige Verbraucher (75 %)





## Gesamtstromverbrauch in Österreich (2)








#### Entwicklung des Stromverbrauchs

## Prognostizierte Entwicklung des Stromverbrauchs für IKT und Konsumelektronik, 1990-2030



Quelle: International Energy Agency





#### Gesetze und Richtlinien

#### Energy related Products

- Einheitliche Ökodesign-Verordnung
- Ziel: Erhöhung der Umweltverträglichkeit
- Rahmenrichtlinie für weitere Durchführungsmaßnahmen

#### Bisherige Durchführungsmaßnahmen

- Beschränkung des Standby-Verbrauchs
  - 2010: 2 W bzw. 1 W
  - 2013: 1W bzw. 0,5W
- Netzteile, Fernseher, Set-Top-Boxen
- Weitere in Vorbereitung



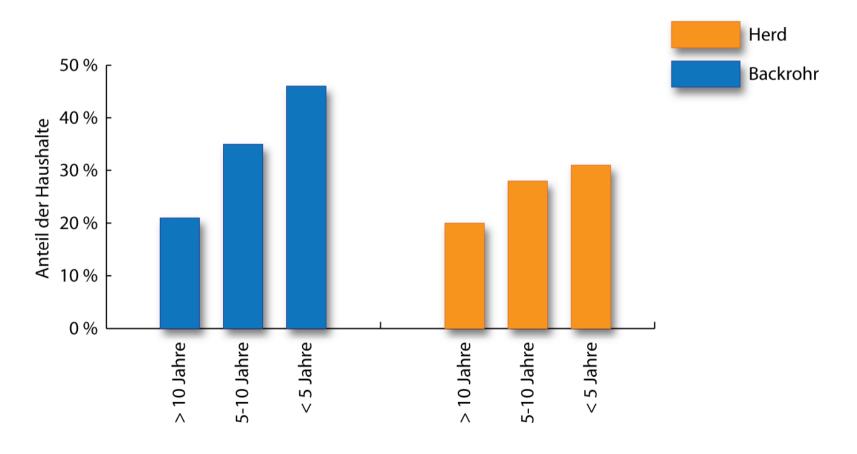


### Entwicklung des Standby-Verbrauchs in Österreich (1)

#### Standby-Verluste (2008)

- 811 GWh
- Summe entspricht Stromverbrauch von 180.000 Haushalten oder Jahresenergie des Donaukraftwerks Jochenstein
- 350.000 t CO<sub>2</sub> (440g/kWh)

#### Elektrogeräte mit hohem Standby-Verbrauch

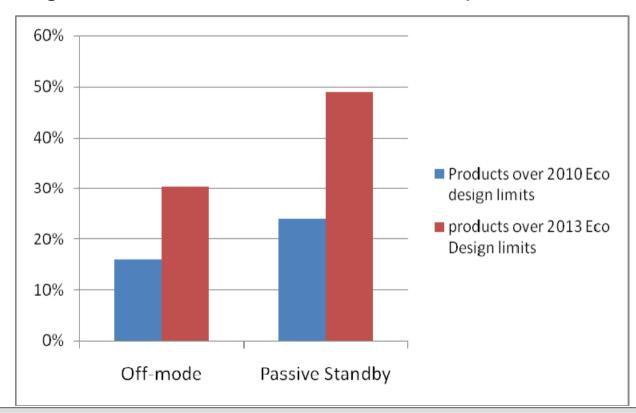

- Satellitenreceiver (9,8 %)
- Fernseher (5,5 %)
- Stereoanlage, Video-, DVD-Player
- bzw. -Recorder (jeweils 5 %)





## Entwicklung des Standby-Verbrauchs in Österreich (2)

#### Ausstattung mit elektronischem Display






## Entwicklung des Standby-Verbrauchs in Österreich (3)

#### SELINA – EU-Projekt zur Messung des Standbys

- 12 Partnerländer
- 6000 Messungen im Elektrofachhandel
- Erste Ergebnise: Großteil der Produkte entspricht EU-Richtlinien







### Entwicklung des Standby-Verbrauchs in Österreich (4)

#### Abschätzung des österreichischen Standby-Verbrauchs im Jahr 2020

- Berücksichtigung der Messergebnisse von SELINA
- Szenarien: Moderater und starker Zuwachs von der Geräteausstattung und des Standby-Verbrauchs
- Anzahl der Haushalte 3.650.000

#### Prognose 2020

- Maximaler Verbrauch: 80 kWh/ Haushalt
- Gesamt-Österreich: 300 GWh
- CO<sub>2</sub>-Ausstoß: 130.000 t
- Stromverbrauch von rund 70.000 Haushalten
- Reduzierung um 65 % (Basis: 2008)





### Entwicklung des Standby-Verbrauchs in Österreich (5)

#### Auswirkungen auf den Standby-Verbrauch

- Ausstattung von Elektrogeräten mit Zusatzfunktionen
- Einführung neuer Elektrogeräte (z.B.: Digitaler Bilderrahmen)

#### Weitere Notwendigkeiten

- Beobachtung des Marktes
- Ergreifung rascher Maßnahmen zur Beschränkung des Standby-Verbrauchs
- Bewusstseinsbildung





#### Zusammenfassung

- Stromverbrauch von IKT wird stark steigen
- Immer mehr Geräte sorgen für Standby-Verluste
- Großteil neuer Produkte mit geringem Standby-Verbrauch
- Richtlinien bringen ca. 65 % Einsparung
- Weitere Beobachtung des Marktes notwendig





# Auswirkungen des technischen Fortschritts sowie aktueller Richtlinien und Gesetze auf den Standby-Verbrauch in Österreich

Dipl.-Ing. Dr. Ernst Schmautzer
Dipl.-Ing. Christian Elbe
Univ.-Prof. Dr. Lothar Fickert

#### Kontakt:

Technische Universität Graz Institut für Elektrische Anlagen Inffeldgasse 18/I, 8010 Graz

schmautzer@tugraz.at 0316 / 873 - 7555