

HAT HEIZEN ZUKUNFT?

Eine langfristige Betrachtung für Ö<mark>sterreich</mark>

Andreas Müller
Energy Economics Group (EEG)
Technische Universität Wien

Arbeiten zu dieser Fragestellung wurden aus Mitteln des Klima- und Energiefonds gefördert und im Rahmen des Programms "ENERGIE DER ZUKUNFT" durchgeführt.

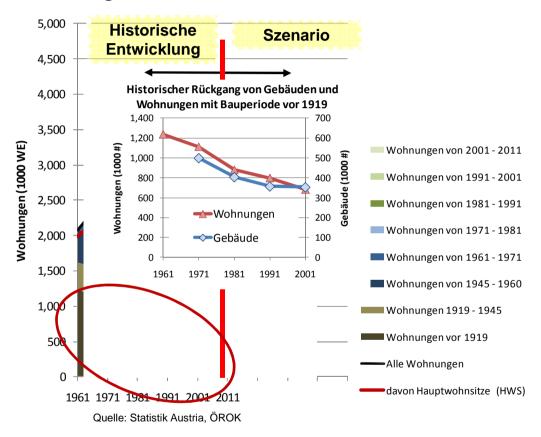
Zentrale Fragestellung:

- Wie kann sich der Wärmebedarf und der dafür eingesetzte Energieverbrauch der Gebäude (langfristig) entwickeln?
- Welchen Einfluss hat ein in unterschiedlichem Maße eintretender Klimawandel auf den Heizenergiebedarf?

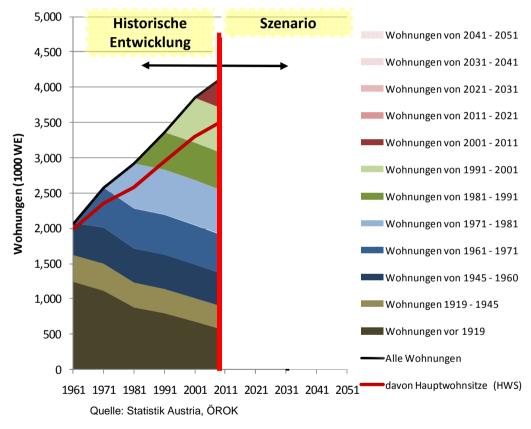
Methode:

- 1. Energiebedarfsentwicklung für Heizen und Warmwasser unter konstantem Klima
 - Datenauflösung: Urbane und ländliche Räume
 - O Unterteilung des Gebäudebestandes in folgende Klassen:
 - o 4 Wohngebäudegrößen, 7 historische Bauperioden + Renovierungen
 - 7 Nicht-Wohngebäudetypen (Handel, Büros, Hotels, Schulen, Krankenhäuser, Sportzentren, Werkstätten) mit unterschiedlichen Größen und Bauperioden
 - o Neubau
 - Statische Berechnung des Energiebedarfes und –Verbrauches (zur Wärmebereitstellung) anhand von statistischen Daten (Statistik Austria, usw.)
 - o Exogen definierte Entwicklung der Gebäudeanzahl (ÖROK Prognose 2030)
 - o Modell unterstützte Analyse der zukünftigen Entwicklung
 - Dynamische Entwicklung des Energieverbrauches mit dem Modell ERNSTL unter Berücksichtigung des Verhaltens von Eigentümer, Mietern bzw. Entscheidungsträgern unter Berücksichtigung technischer Rahmenbedingungen.
 - o Sanierungen
 - o Energiebedarf und -Verbrauch

Methode:


- 2. Berechnung des Einflusses der Klimaänderung Datenauflösung: Gemeindeebene
 - Hochaufgelöste Klimaszenarien:
 B1, A1B, A2 (Temperaturänderung: 2,4-4,2 °C bis 2100)
 (Institut für Meteorologie (BOKU-Met),
 basierend auf Remo-UBA (Max-Planck-Inst.) 10x10 km
 - o Gebäudedaten:
 - o Gebäudebestand auf Gemeindeebene aus statistischen Daten (8 WG, 7 NWG, 7 BP)
 - Neubauraten auf Bezirksebene (ÖROK)
 - Abrissraten entsprechend dem Österreichschnitt (bezogen auf Bauperioden)
 - Anteil von Sanierungen entsprechend dem Österreichschnitt, ebenso die Verteilung der Heizungssysteme (Unterscheidung in urbanen und ländlichen Raum)
 - o Solare Einstrahlung: Lokaler Einfluss wird vernachlässigt, zeitlich konstant
 - Simulation von Gebäudeverhalten unter unterschiedlichen Klimabedingungen: Änderung des Energieverbrauches in Abhängigkeit:
 - o HGTs
 - Qualität der Gebäudehülle, solare Einstrahlungsflächen
 - Berücksichtigung der Verschiebung der Heizgrenze und des Servicefaktors

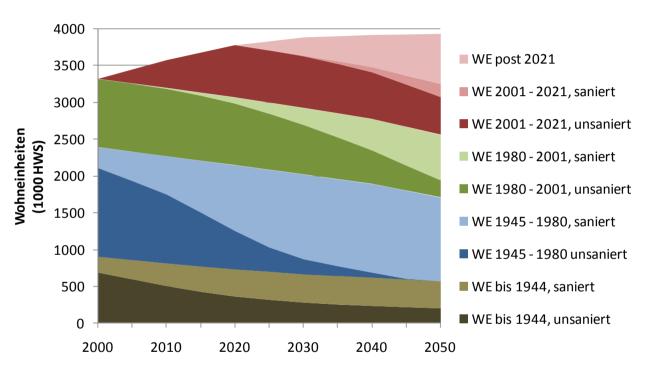
Österreichischer Wohngebäudebestand:

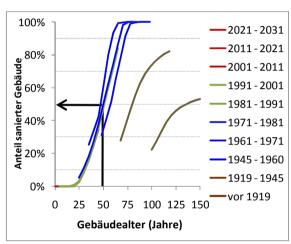

Historische Entwicklung

- Steigender Anteil von Wohnungen ohne Hauptwohnsitz
- Rückgang von Wohnungen in Gründerzeitbauten (vor 1919)
 nicht nur aufgrund von Wohnungszusammenlegungen

Österreichischer Wohngebäudebestand:

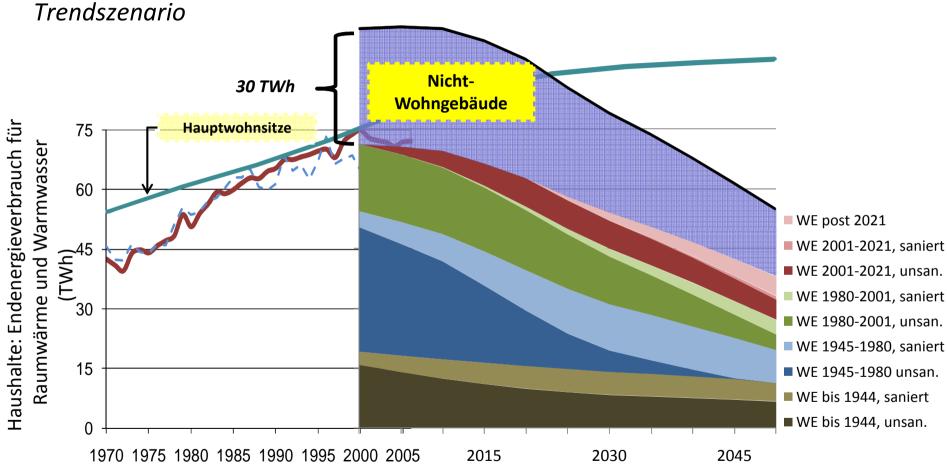
Szenario der zukünftigen Entwicklung


- Wohnungsentwicklung 2011 2031: Österreichische Raumordnungskonferenz (ÖROK)
- Entwicklung 2031-2051: Trendentwicklung von Statistik Austria, eigene Berechnungen
- Berücksichtigt: Abnahme der Wohnungsbelegung, Bevölkerungsentwicklung
- Hälfte der WE in 2050 stammen aus der Bauperiode vor 1991



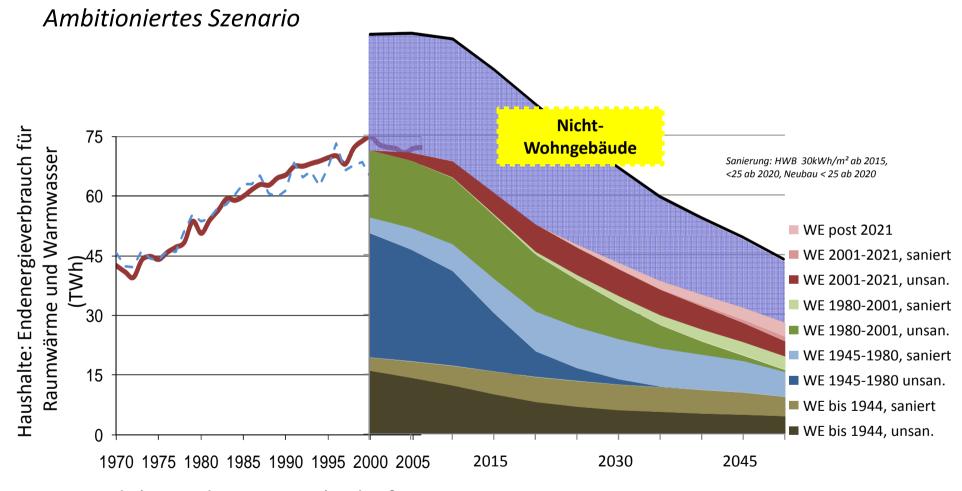
Hauptwohnsitze: Thermische Gebäudesanierungen

Trend-Szenario



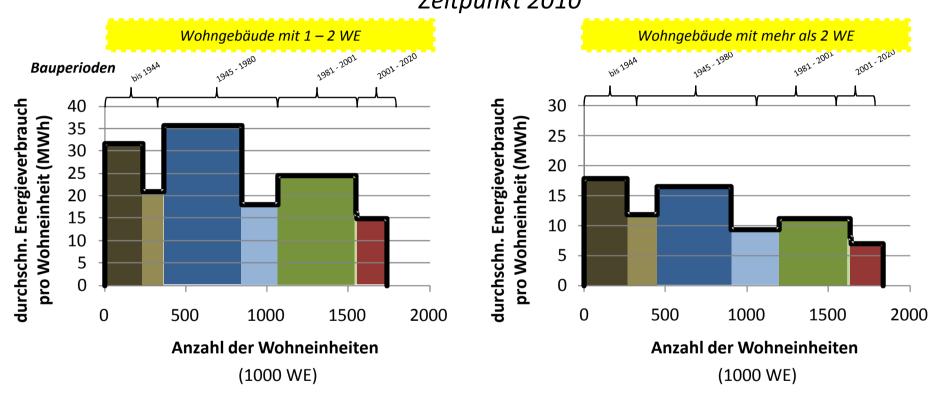
- Sanierung der Wohngebäude 45-80 bis 2025 weitgehend abgeschlossen
- In 2050 sind ca. die Hälfte der Wohneinheiten aus der Klasse:
 - \circ Saniert , Bauperiode 1945-1990

Energiebedarf des österreichischen Gebäudebestand:



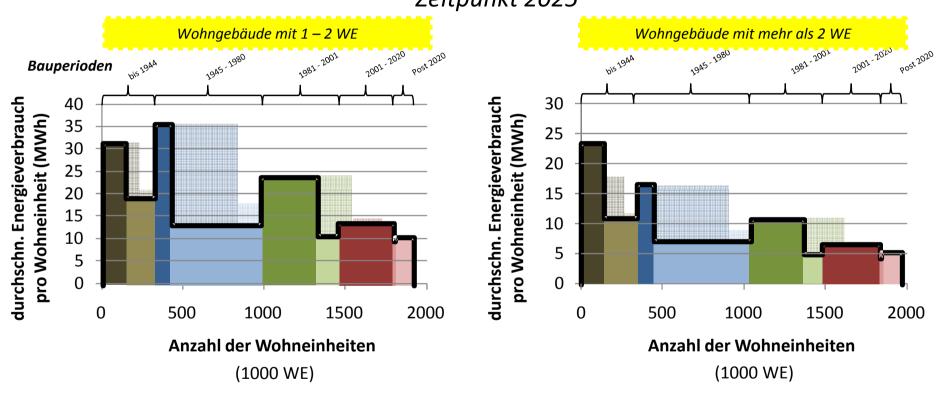
- Der Energiebedarf der Wohngebäude ist bereits im Sinken begriffen
- In den kommenden 40 Jahren Reduktion des Energiebedarfes um 45 %

Energiebedarf des österreichischen Gebäudebestand



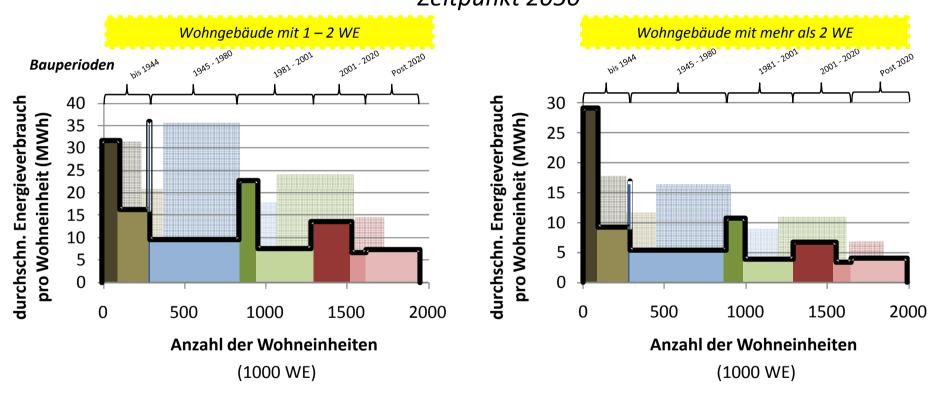
- Reduktion des Energiebedarfes um 60 %
- Langfristig ergibt sich der größte Unterschied durch die erhöhte Sanierungsqualität in den Jahren vor 2010 - 2025

Spezifischer Energieverbrauch zur Wärmebereitstellung pro Wohneinheit: *Trendszenario* Zeitpunkt 2010

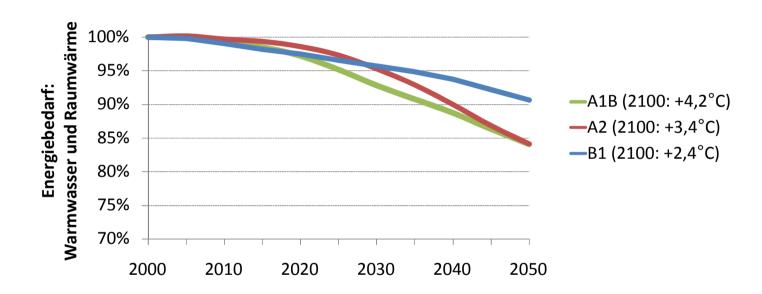


Flächen entsprechen den Energieverbräuchen

Spezifischer Energieverbrauch zur Wärmebereitstellung pro Wohneinheit: *Trendszenario Zeitpunkt 2025*



Flächen entsprechen den Energieverbräuchen


Spezifischer Energieverbrauch zur Wärmebereitstellung pro Wohneinheit: *Trendszenario Zeitpunkt 2050*

Flächen entsprechen den Energieverbräuchen

Einfluss der Klimaänderung

Klimasignal 2050: Energiebedarf um 8-17% niedriger als Szenarien ohne Klimaeinfluss

Schlussfolgerungen

- Energieverbrauch von Wohngebäuden (zur Wärmebereitstellung) sinkt bereits
 - Dennoch: mit historischen / derzeitigen Sanierungsraten lassen sich die langfristig an die Gesellschaft gestellten Anforderungen an Energiereduktion (und Treibhausgasemissionen) nicht erreichen
- o Großteil der heutigen Gebäude wird in 40 Jahren noch bestehen
- Gefahr des Lock-in Effektes wenn Sanierungen mit unzureichender Qualität durchgeführt werden
 - o Denn: Der Wärmebedarf in 40 Jahren wird zu wesentlichen Teilen von der Qualität der Sanierungen in den kommenden 10 Jahren bestimmt werden

Wie kann sich der Wärmebedarf und der dafür eingesetzte Energieverbrauch der Gebäude (langfristig) entwickeln?

- Wärmebedarf wird sich reduzieren: minus 45 60% bei konstantem Klima, minus 50-65% im B1 Szenario
- Aber auch langfristig vorhanden sein!

Vielen Dank für ihre Aufmerksamkeit!

Weitere Informationen / Fragen:

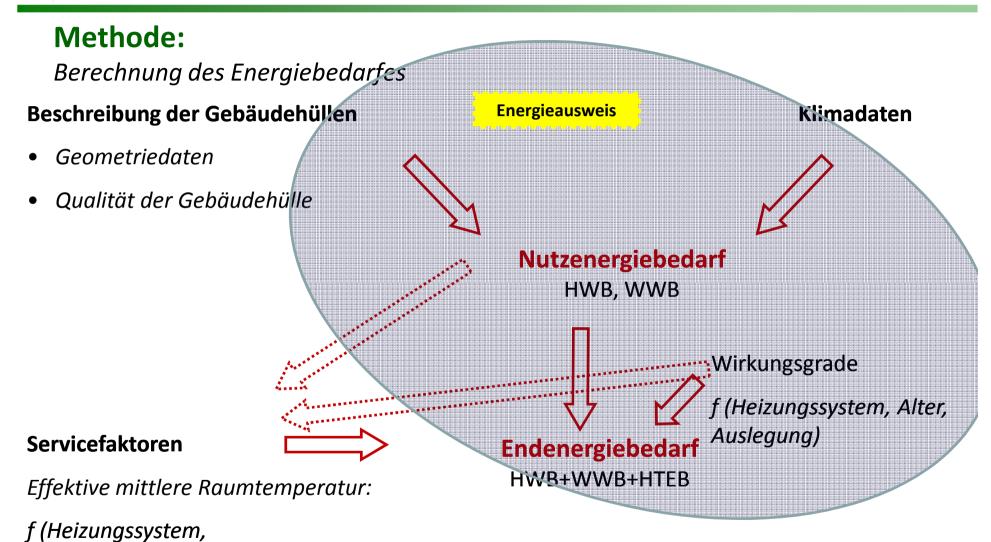
Andreas Müller

Energy Economics Group

email: mueller@eeg.tuwien.ac.at

tel: +43 1 58801 37362

web: www.eeg.tuwien.ac.at



11. Energieinnovations-Symposium, 10-12.2.2010

Nutzenergiebedarf,
Gebäudetyp, Wohnungsgröße)

Hauptwohnsitze: Thermische Gebäudesanierungen Status quo

	Sanierungsrate 1990	Sanierungsrate aktuell
Eigenheime	0.8%	1.0%
Eigentumswohnungen	0.7%	1.0%
Private Wohnungen	1.2%	1.0%
GBV Miete	2.1%	3.0%
Kommunale Miete	1.9%	2.0%
Gesamt	1.1%	1.4%

Quelle: Austrian Energy Agency (Statistik Austria, IIBW-Institut für Immobilien, Bauen und Wohnen GmbH)

- Sanierungsraten gegenüber den 90ziger Jahren gestiegen
- Im energetisch wichtigen Bereich der Eigenheime und Eigentumswohnungen weiterhin sehr gering
- Bei Fortschreibung der aktuellen Sanierungsraten (ohne Abriss) bis 2050: 32% des heutigen Wohnungsbestandes thermisch unsaniert
- Zusätzliche Forcierung von Sanierungen ist notwendig