

Graz, 10. - 12. Februar 2010

11. Symposium Energieinnovation – Alte Ziele, Neue Wege

Abschätzung des Photovoltaik-Potentials auf Dachflächen in Deutschland

Martin Lödl(*)¹, Georg Kerber¹, Prof. Dr. Rolf Witzmann¹, Dr. Clemens Hoffmann², Dr. Michael Metzger²

¹Technische Universität München, Fachgebiet Elektrische Energieversorgungsnetze martin.loedl@mytum.de - Telefon: +49.89.289.22017

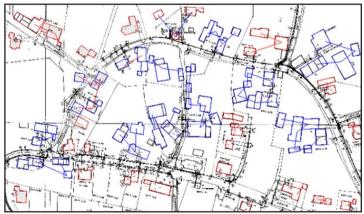
²Siemens AG, Corporate Research and Technologies michael.metzger@siemens.com - Telefon: +49.89.636.49720

Übersicht

- Photovoltaik-Dachflächenpotential in Netzbezirken
 - typische Gebäudegrößen
 - typische Photovoltaik-Anlagenleistungen
 - Anteil der Landwirtschaften
- Photovoltaik-Dachflächenpotential in Bayern
- Photovoltaik-Dachflächenpotential in Deutschland
- Zusammenfassung

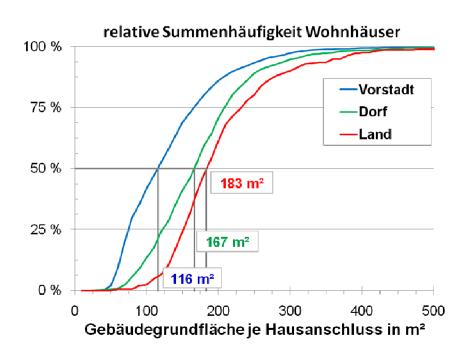
Photovoltaik-Dachflächenpotential

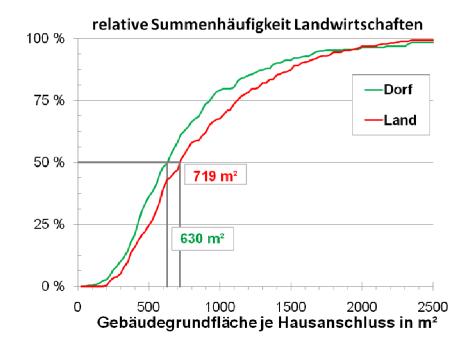
in Netzbezirken


Datengrundlage

- 67 digitalisierte Flurkarten
- Siedlungskategorien
 Vorstadt, Dorf und ländliches Gebiet

Ermittlung der Gebäudegrößen

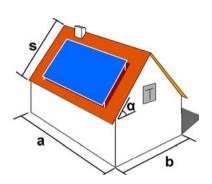

- Vermessung von ca. 4.500 realen Gebäudegrundrissen
- Nachzeichnung der Gebäudeumrisse einschl. Anbauten und Nebengebäude
- Unterscheidung zwischen Wohngebäuden und Landwirtschaften/Industrie



Auswertung der Gebäudegrundflächen

Wohngebäude (Steildächer)

- Rechteck-Gebäude
- Neigungswinkel: $\alpha = 35^{\circ}$
- Nur südlicher ausgerichtete Dachseiten
- Reduktionsfaktor für nicht-nutzbare Dachflächen: $\rho = 0.80$
- → Berechnung Dachfläche:

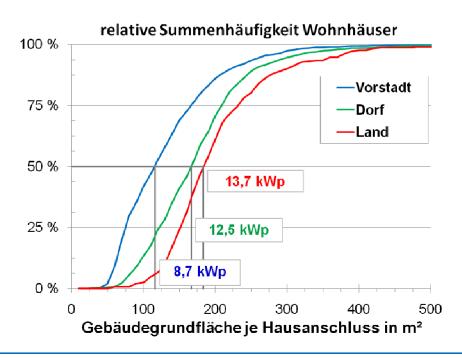

$$A_{PV,Nutz} = \frac{1}{2}A_{GGF} \cdot \rho \cdot \frac{1}{\cos \alpha} \approx 0.5 \cdot A_{GGF}$$

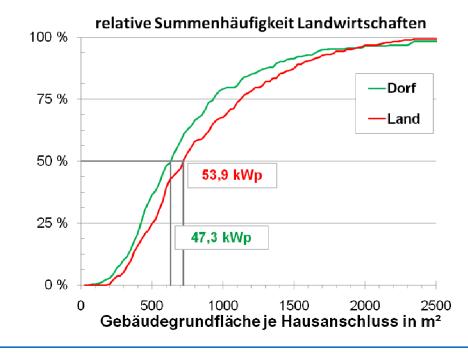
Landwirtschaftliche Gebäude (Flachdächer)

- Aufständerung der Module
- → Berechnung der Dachfläche:

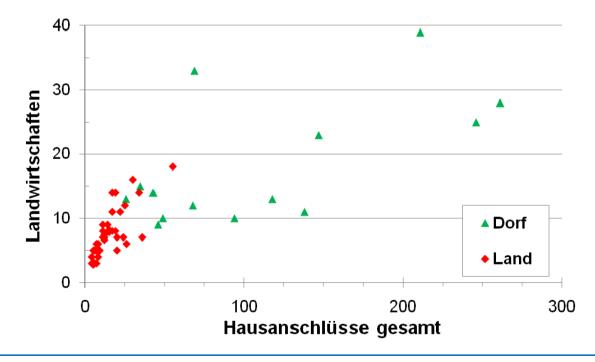
$$A_{PV,Nutz} \approx 0.5 \cdot A_{GGF}$$

nach Scheffler, Jörg: Bestimmung der maximal zulässigen Netzanschlussleistung photovoltaischer Energiewandlungsanlagen in Wohnsiedlungsgebieten TU Chemnitz, 2002





- Photovoltaik-Anlagenleistung
 - Spezifische Leistung der Photovoltaik-Module $\eta = 150 \text{ W}_{el}/\text{m}^2$


Mittleres PV-Potential in den Siedlungs-Kategorien

- Abschlag für solarthermische Nutzung
 - ca. 34 % der Dachflächen für Kollektoren reserviert
- Anteil der Landwirtschaften

Photovoltaik-Potential in Niederspannungs-Verteilnetzen

- Anzahl der Hausanschlüsse, Anteil Landwirtschaften/Industrie
- Mittleres Photovoltaik-Potential in typischen Netzen:¹

Siedlungs-Kategorie	Land	Dorf	Vorstadt
Mittleres PV-Potential pro	200 – 330	800	830
Netzgebiet in kWp	200 – 330	800	630

Mittleres Photovoltaik-Potential pro Gebäude:

Siedlungs-Kategorie	Land	Dorf	Vorstadt
Mittleres PV-Potential pro Hausanschluss in kWp	25,8	13,9	5,7

¹Kerber, Georg; Witzmann, Rolf:

Statistische Analyse von NS-Verteilungsnetzen und Modellierung von Referenznetzen;

ew, Jg. 107 (2008), Heft 6, S. 22 -26

Photovoltaik-Dachflächenpotential

in Bayern

Photovoltaik-Potential in Bayern

Einteilung der bayrischen Städte und Gemeinden anhand statistischer Daten

Einwohnerzahl	Einwohnerdichte	Siedlungsfläche	Anteil der	Wohnfläche pro
	[EW/km²]		Wohnungen pro	Person
			Wohngebäude	[m²/Person]
Ländliche Region	Ländliche Region	Ländliche Region	Ländliche Region	Ländliche Region
bis 2.000	bis 100	bis 40 ha	bis 1,4	mehr als 48
Dorf	Dorf	Dorf	Dorf	Dorf
bis 5.000	bis 300	bis 80 ha	bis 1,6	mehr als 45
Kleinstadt		Kleinstadt	Kleinstadt	Kleinstadt
bis 20.000	Stadt	bis 150 ha	bis 1,8	mehr als 42
Mittel-/Großstadt	ab 300	Mittel-/Großstadt	Mittel-/Großstadt	Mittel-/Großstadt
ab 20.000		ab 150 ha	ab 1,8	weniger als 42

→ Eingruppierung nach bester Übereinstimmung

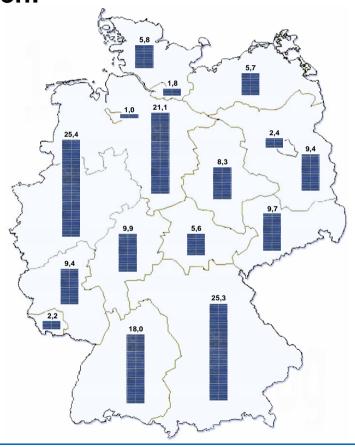
Photovoltaik-Potential in Bayern

Skalierung der Dachflächen

- Skalierung über Verhältnis der Grund- und Freiflächen
- enthält Verhältnis Gebäudezahl / Anzahl der Hausanschlüsse
- enthält Anteil der Landwirtschaften und Industrie
- anteilige Berücksichtigung PV-Potential in Mittel- und Großstädten

→ Photovoltaik-Dachflächenpotential in Bayern: ca. 25,3 GWp

Siedlungs-Kategorie	PV-Potential in GWp
Land	2,8
Dorf	12,0
Kleinstadt	8,3
Mittel- und Großstadt	2,2


Photovoltaik-Dachflächenpotential

in Deutschland

Photovoltaik-Potential in Deutschland

Skalierung über Verhältnis der Bauflächen:

- Wohngebäude inkl. zugehöriger Freifläche
- Gewerbebetriebe inkl. Lagerplätze
- land- und forstwirtschaftliche Betriebe
- Gaststätten, Einkaufszentren, u.ä.
- Erholungsflächen
- → Photovoltaik-Dachflächenpotential in Deutschland: ca. 161 GWp

Photovoltaik-Potential in Deutschland

Unsicherheiten

- Annahme der Randbedingungen
- Fehler bei der Vermessung der Gebäudegrundrisse
- Kategorisierung der Städte und Gemeinden
- Unterschiedliche Siedlungsstrukturen in den Bundesländern
- Kein Potential in Kerngebieten von Mittel- und Großstädten
- Wirtschaftlichkeit von Ausrichtungen und Standorte nicht im Detail berücksichtigt
- → Unsicherheiten zu < 20 % angenommen

Zusammenfassung

Zusammenfassung

- Gebäudegrößen verschiedener Regionen und Siedlungskategorien analysiert
- wirtschaftlich nutzbare Dachflächen für typische Gebäude und Netzgebiete ermittelt
- maximal installierbare Photovoltaik-Anlagenleistungen abgeschätzt
- nutzbares PV-Potential auf Bundesländer und Deutschland skaliert
- → Typische PV-Anlagengrößen für Aussagen zur Aufnahmefähigkeit von Niederspannungs-Verteilnetzen oder Untersuchungen zur mittelfristigen Entwicklung von Stromversorgungsnetzen bekannt.

Vielen Dank für Ihre Aufmerksamkeit.

Martin Lödl

Technische Universität München Fachgebiet Elektrische Energieversorgungsnetze Arcisstraße 21, 80333 München, Deutschland

Tel.: +49.89.289.22017 Fax: +49.89.289.25089

Email: martin.loedl@mytum.de Web: http://www.een.ei.tum.de