11th Symposium on EnInnov The Economics of implementing Smart Metering in Europe

MMag. Alexander Gabl, Dipl.-Ing. Erwin Smole

PRICEWATERHOUSE COPERS 18

Graz, February 2010

Table of Contents

		Page
1	European perspective	1
2	Cost-benefit analysis and Smart Metering	6
	2.1 CAPEX, OPEX	11
	2.2 Communication	13
	2.3 Economy	17
3	Credentials and contact	19

Section 1 European perspective

Drivers for the implementation

- Energy Services Directive
 2006/32/EC
- Third Energy Package Directive 2009/72/EC, 80% until 2020
- EUR 30 billion market until 2014
- E-mobility, decentralised production
- Supply assurance, aging infrastructure and capacity management
- Reducing process costs

Section 1 - European perspective

Countries implementation mandatory (1/2)

- Italy (95% by 2011)
- Germany (starting in 2010 for new buildings)
- Sweden (100% by 2009)
- Spain (by 2018)
- Portugal (by 2015)
- Norway (by 2013)

Section 1 - European perspective

Countries implementation voluntary (2/2)

- Austria
 Greece
- Czech Republic Ireland
- Cyprus
- Denmark
- Finland
- France

- Netherlands
- Poland
- UK

Largest European rollout in France

Source: PwC France, Exemplary illustration of the implementation process in France

 ERDF presented in 2008 the AMM rollout of 35 Mio. Meters and 7 Mio. concentrators until end of 2017.

- Estimated costs EUR 4 to 5 billion, 50% of which are planned to be installation costs.
- Largest project Europe-wide.

Connecting Smart Metering and CBA

Six important steps to do, when conducting cost-benefit analysis

- Defining alternatives
 - Scenarios for implementation
- Model timing
 - Lifetime, roll out, operation
- Stakeholders
 - Benefits
 - Costs

- Net-Present-Value
 - Discount rate
- Sensitivity analysis
- Recommendation

Stakeholder in Austria (1/2)

Grid Operator

- Purchase, installation, IT, OPEX
- Meter reading
- Load profile management
- Back office
- Peak/off-peak demand

Supplier

- New tariff models
- Balancing energy, peak/offpeak
- Back office invoicing
- Postpone investments

Stakeholder in Austria (2/2)

Customer

- Timely information on usage
- Reduced consumption
- Saved time
- Lower invoices
- Supplier switching
- Efficient competition

Energy efficiency and CO₂ emissions

Change in consumption behaviour

- Timely information on consumed usage through monthly invoicing, SMS, email, mail.
- 1% 20%
- i.e. Norway -4% (space heating)
- High grade of penetration

Energy efficiency effect depends on

- Change in consumer behaviour
- Penetration grade
- Level of energy efficiency in a country
- CO₂ savings depend on the energy efficiency effect

Section 2.1 CAPEX, OPEX

Key numbers and their implication

Device	Unit	Range	Comment
Smart Meter Power (AMI)	EUR	34 – 60	Without communication module
Smart Meter Gas (AMI)	EUR	50 - 80	Without communication module
Installation Costs per Power Smart Meter	EUR	15 – 60	Installation, licensing, project costs, rollout method
Server + implementation	EUR	30,000 - 48,000	
Meters per server	Number	10,000 - 50,000	
Concentrator	EUR	1,000 - 2,000	
Meters per concentrator	Number	100 – 300	

Source: PwC Analysis

European Case – implementing 250 Mio power Smart Meters

- Investment: EUR 8.5 15 bn
- Installation: EUR 4 15 bn
- Overall: EUR 12.5 30 bn

Section 2.2 Communication

Communication technologies

	Strengths	Weaknesses
Power line (PLC)	 > Widely tested in trial projects > Existing infrastructure 	 > 500 meters range > Slow data read-out > Signal may interrupt other devices
GSM/GPRS/ UMTS	 Direct transmission Reliable, secure Non susceptible to interference 	Running costs based on data volume
DSL	 Long ranges possible Hardly susceptible to interference 	 Running costs based on data volume Modem switched on (vacation, work,)
IP, Fibre optic	 Nationwide penetration (IP) Reliable, secure, non susceptible to interferences FO: high transfer rate 	 FO: not available FO: high investment costs Service provider -> capacity Running costs based on data volume
WLAN, ZigBee	 > Open standard > Low energy consumption > No connection costs 	 Line of sight Bandwidth decreases with number users No licensed radio range
Satellite	Penetration	 Installation and connection costs Data transfer low Available capacity, time lag signal

11th Symposium on EnInnov • The Economics of implementing Smart Metering in Europe

Section 2.2 - Communication

Topology of technology model (1/2)

Source: PwC Analysis

Section 2.2 - Communication

Topology of technology model (2/2)

Source: PwC Analysis

Section 2.3 Economy

Section 2.3 - Economy

Key drivers of CBA

7 Main drivers for CBA result

- Consumption behaviour
 - > 1% up to 20%
- Load shifting
 - > 1.9% to 4.7%
- Investment Costs
- Potential energy price reductions
- Discount rate
- Roll out
- Penetration grade

Section 3 Credentials and contact

A selection of our global capability in Smart Metering

11th Symposium on EnInnov • The Economics of implementing Smart Metering in Europe

Smart Metering study 2008

- "State of realisation and strategic implications for the German utility market"
- Goal: Evaluation of the expectations and perceptions of the utilities and strategic considerations.
- Publication in November 2008

Section 3 - Credentials and contact

Thank you for your attention

MMag. Alexander Gabl

- Tel: +43 01 50188 2944
- E-Mail: <u>alexander.gabl@at.pwc.com</u>

Dipl.-Ing. Erwin Smole

- Tel: +43 01 50188 2928
- E-Mail: <u>erwin.smole@at.pwc.com</u>
- Internet: www.pwc.com/energy