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Abstract 

Climate change is altering weather patterns and increasing uncertainty of renewable energy availability. 

Energy system modelling therefore requires coherent future time series of renewables derived from 

weather variables such as irradiation, wind speed, and precipitation [1]. Deriving inflows for 

pumped‑storage hydropower schemes is particularly challenging due to the relational complexity of 

collection works, reservoirs, discharge pathways, turbines, and pumps [2]. Although several studies 

have considered relational complexities [3], modelling tools that support robust and independent 

scenario analysis remain limited. This work addresses this gap by developing a graph-based database 

of Austria’s pumped‑storage schemes using open‑source datasets. The graph-based approach ensures 

the preservation of hydraulic and operational plant constraints. Coupled with a precipitation–runoff 

routing hydrological model, the framework generates inflow time series from spatially-temporally 

resolved climate data, which serves as input for energy system optimization models, such as the LEGO 

[4] model used in the iKlimEt project [5].  The framework is tested and calibrated in numerous case 

studies of Austrian pumped-storage schemes [6], demonstrating its applicability. 

Methodology and Results 

The developed framework comprises targeted data research [7], the development of a graph database 

model representing the relational structure of pumped-storage schemes. Coupled with an integration of 

a climate-driven GR6J [8] runoff routing tool. It incorporates hydrological inputs to simulate inflows and 

energy generation across pumped-storage schemes. Figure 1 illustrates the topographical map and the 

corresponding graph representation of the Limberg I pumped-storage scheme with its catchments, while 

Figure 2 shows the simulated inflows. 

 

Figure 1: Topographical map (left) and graph representation (right) of the Limberg I scheme. 
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Figure 2: Simulated annual inflows of the Limberg I scheme. 

Conclusion and future advancements 

This work demonstrates the potential of graph-based approaches to strengthen hydropower modelling 

and energy forecasting under climate variability. By structuring hydropower systems as interconnected 

networks, the work opens new possibilities for integrating diverse data sources, exploring indirect 

dependencies, and supporting decision-making in complex energy systems. The outputs provide a 

foundation for linking hydrological processes with energy optimisation frameworks, contributing to the 

resilience of pumped-storage schemes in a carbon-neutral future. 

Looking forward, several advancements could extend the framework’s scope and impact: 

• Automation of graph generation to streamline model construction from open-source data. 

• Enhancement of models using detailed operational data from scheme operators for calibration. 

• Application of remote sensing to estimate reservoir levels in ungauged systems. 

Together, these directions highlight how graph-based modelling can evolve into a versatile toolset for 

hydropower research, bridging climate science, system optimisation, and sustainable energy planning. 
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