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Abstract

Climate change is altering weather patterns and increasing uncertainty of renewable energy availability.
Energy system modelling therefore requires coherent future time series of renewables derived from
weather variables such as irradiation, wind speed, and precipitation [1]. Deriving inflows for
pumped-storage hydropower schemes is particularly challenging due to the relational complexity of
collection works, reservoirs, discharge pathways, turbines, and pumps [2]. Although several studies
have considered relational complexities [3], modelling tools that support robust and independent
scenario analysis remain limited. This work addresses this gap by developing a graph-based database
of Austria’s pumped-storage schemes using open-source datasets. The graph-based approach ensures
the preservation of hydraulic and operational plant constraints. Coupled with a precipitation—runoff
routing hydrological model, the framework generates inflow time series from spatially-temporally
resolved climate data, which serves as input for energy system optimization models, such as the LEGO
[4] model used in the iKlimEt project [5]. The framework is tested and calibrated in numerous case
studies of Austrian pumped-storage schemes [6], demonstrating its applicability.

Methodology and Results

The developed framework comprises targeted data research [7], the development of a graph database
model representing the relational structure of pumped-storage schemes. Coupled with an integration of
a climate-driven GR6J [8] runoff routing tool. It incorporates hydrological inputs to simulate inflows and
energy generation across pumped-storage schemes. Figure 1 illustrates the topographical map and the
corresponding graph representation of the Limberg | pumped-storage scheme with its catchments, while
Figure 2 shows the simulated inflows.
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Figure 1: Topographical map (left) and graph representation (right) of the Limberg | scheme.
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Figure 2: Simulated annual inflows of the Limberg | scheme.

Conclusion and future advancements

This work demonstrates the potential of graph-based approaches to strengthen hydropower modelling
and energy forecasting under climate variability. By structuring hydropower systems as interconnected
networks, the work opens new possibilities for integrating diverse data sources, exploring indirect
dependencies, and supporting decision-making in complex energy systems. The outputs provide a
foundation for linking hydrological processes with energy optimisation frameworks, contributing to the
resilience of pumped-storage schemes in a carbon-neutral future.

Looking forward, several advancements could extend the framework’s scope and impact:
o Automation of graph generation to streamline model construction from open-source data.
o Enhancement of models using detailed operational data from scheme operators for calibration.
e Application of remote sensing to estimate reservoir levels in ungauged systems.

Together, these directions highlight how graph-based modelling can evolve into a versatile toolset for
hydropower research, bridging climate science, system optimisation, and sustainable energy planning.
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