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Einleitung 

Die zunehmende Verbreitung von Elektrofahrzeugen (EVs) führt zu einem steigenden Bedarf an 

größeren Batteriekapazitäten und höheren Ladeleistungen, um Unterbrechungen insbesondere auf 

Langstreckenfahrten zu minimieren. Moderne EVs sind daher inzwischen mit sehr leistungsfähigen 

Batterien ausgestattet, die mehrere Haushalte über mehrere Tage hinweg versorgen könnten [1]. Da 

sowohl Verteilnetzbetreiber als auch Energieversorger laufend vor der Herausforderung stehen, diese 

wachsende Leistungsnachfrage zu bewältigen, steigen Netzentgelte und Leistungspreise. Der Ausbau 

der Energiespeicherinfrastruktur ist mit hohen Kosten verbunden, weshalb es naheliegt, die 

beträchtliche Speicherkapazität von EVs in das Stromnetz zu integrieren sie durch bidirektionales Laden 

(Vehicle-to-Grid, V2G) als Batteriespeicher zu nützen [2]. Der Großteil der bisherigen 

wissenschaftlichen Arbeiten konzentriert sich darauf, Leistungsspitzen durch netzdienliches Laden und 

Entladen zu reduzieren und damit zur Resilienz des Stromnetzes sowie zur Minderung von CO₂-

Emissionen beizutragen. Allerdings basieren viele dieser Studien auf statischen Annahmen, wie 

nächtlichem Laden zu Hause oder tagsüber am Arbeitsplatz, und verlassen sich zu stark auf tägliche 

Routinen. 

In der vorliegenden Arbeit werden zusätzlich zeitliche und räumliche Komponenten einbezogen, indem 

Verkehrsströme als einzelne Autos mittels Kameras verfolgt werden. Durch die Analyse von Echtzeit-

Videodaten durch Vehicle Re-Identification werden Vorhersagen darüber, wann einzelne Fahrzeuge 

eines von mehreren möglichen Zielen erreichen, verbessert. Die analysierten Verkehrsdaten dienen als 

Methode zur realistischen Prognose aggregierter Lastprofile, die durch EVs in urbanen Szenarien 

verursacht werden [3]. Solche realitätsnahen Lastprofile werden anschließend genutzt, um Strategien 

zur Reduktion von Leistungsspitzen zu untersuchen [4]. 

Methoden 

Es wurde gezeigt, dass Fahrzeuge mittels Machine Vision hinreichend zuverlässig erkannt werden 

können [5]. Die Fahrzeugverfolgung erfolgt über Echtzeit-Objekterkennungsmodelle wie YOLO (You 

Only Look Once) und RT-DETR (Real-Time DEtection TRansformer), die Fahrzeuge im Kamerabild 

kontinuierlich und präzise detektieren. Nach der Objekterkennung erhält jedes Fahrzeug eine eindeutige 

ID und seine Route wird nachverfolgt.  

Auf Basis Fahrzeugverfolgung erfolgt eine Prädiktion an möglichen erreichbaren Orten innerhalb eines 

Prädiktionszeitraums. Dadurch kann sowohl die Flexibilität als auch der Ladebedarf von EVs in 

Abhängigkeit der Ankunftswahrscheinlichkeit und -zeitpunkt stochastisch beschrieben werden. Aus 

diesen Daten erstellt ein Energiemanagementsystem Empfehlungen für das bidirektionale Laden, um 

Netzstabilität sicherzustellen und Lastspitzen zu vermeiden. 

Ergebnisse & Diskussion 

Es wurde eine stochastische Modellierungsumgebung auf Basis von Pyomo [6] aufgebaut, um 

verschiedene Wetter-, Verkehrs- und PV-Erzeugungsszenarien abzubilden. Die stochastischen 

Komponenten werden über das Pyomo-Plugin MPI-SPPY [7] integriert. Entscheidungen zu Lade- und 

Entladeprozessen stationärer Batteriespeicher sowie dynamische Energiepreise für Verbrauch und 

Rückspeisung werden als nichtlineares, konvexes Optimierungsproblem formuliert und mithilfe des 

Solvers IPOPT [8] gelöst. Mögliche PV-Erzeugungs- und Lastverläufe werden in Szenarien 

kategorisiert, nach ihren Eintrittswahrscheinlichkeiten gewichtet und anschließend wird die optimale 
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Zuordnung der Entscheidungsvariablen über alle gewichteten Szenarien bestimmt. Erste 

Optimierungsergebnisse zeigen sowohl eine Verbesserung der kumulierten Energiekosten als auch 

eine Glättung des Lastprofils an der Verteilnetzstation. 

 

Abbildung 1: Konzeptskizze von aktiver Steuerung mehrerer lokaler Energiegemeinschaften unter Einbeziehung 
von partieller Verkehrsüberwachung und Verfolgung von EVs 
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