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Inhalt 

Die zunehmende Einspeisung erneuerbarer Energien verschiebt die Herausforderungen von 

Energiesystemen: Die Fähigkeit, Lasten zeitlich flexibel anzupassen, gewinnt gegenüber einer reinen 

Verbrauchsreduktion zunehmend an Bedeutung [1]. Gebäude können hierzu einen wesentlichen 

Beitrag leisten, indem ihre thermische Trägheit gezielt zur Lastverschiebung genutzt wird [2]. Um diese 

Flexibilität in der Praxis erschließen zu können, werden Modelle benötigt, die trotz begrenzter 

Gebäudeinformationen und eingeschränkter Datenlage sowohl die Heizlast zuverlässig vorhersagen als 

auch die durch veränderte Heizlast verursachten Temperaturänderungen präzise abbilden können [3]. 

Ein wesentliches methodisches Problem ergibt sich dabei aus den üblicherweise verfügbaren 

Gebäudedaten: Innenraumtemperaturen werden meist in einem eng geregelten Komfortbereich 

gehalten, sodass nur eine geringe Dynamik beobachtet werden kann und Abhängigkeiten von 

wesentlichen Einflussgrößen, wie etwa der zugeführten Heizleistung, nur schwer lernbar sind [4].  

Rein datengetriebene Modelle haben unter diesen Bedingungen Schwierigkeiten: Ohne physikalisches 

Vorwissen benötigen sie hinreichend variierende Systemzustände, die genügend Information enthalten, 

um belastbare Zusammenhänge zu erlernen. Bei unzureichender Anregung können die abgeleiteten 

Modelle zwar die Trainingsdaten reproduzieren, liefern unter zuvor nicht beobachteten Kombinationen 

von Einflussgrößen jedoch häufig physikalisch inkonsistente Prognosen [5].  

Physikalisch strukturierte Ansätze wie RC-Modelle begegnen diesem Problem, indem sie 

Energiebilanzgleichungen als Modellgrundlage nutzen. Obwohl sie von ihrer induktiven Struktur 

profitieren, sind ihre Parameter unter realen Messbedingungen nicht immer eindeutig identifizierbar; 

zusätzlich beeinträchtigen unbeobachtete Einflüsse wie interne Wärmegewinne durch Personen und 

Geräte oder nutzerinduzierte Lüftung die Parameteridentifikation und damit auch die Prognosequalität 

[6].  

Physics-Informed Neural Networks (PINNs) kombinieren RC-Modellstrukturen mit der Flexibilität 

neuronaler Netze und adressieren damit sowohl den geringen Informationsgehalt der Daten als auch 

die Herausforderungen der Parameteridentifikation. Durch die Einbettung der Energiebilanzgleichungen 

in die Verlustfunktion des neuronalen Netzes werden RC-Parameter und Netzgewichte gemeinsam 

optimiert. Das Modell lernt eine glatte Approximation der Temperaturverläufe, während die 

physikalische Verlustfunktion sicherstellt, dass die vorhergesagten Temperaturänderungen den 

thermodynamischen Gesetzmäßigkeiten entsprechen [7]. Dadurch entstehen Modelle, die sowohl 

datenbasiert plausibel als auch physikalisch konsistent sind [8]. 

Methodik 

Um die Eignung von PINNs für die Vorhersage der Innenraumtemperatur zu untersuchen, werden drei 

Modellklassen miteinander verglichen: (i) ein datengetriebenes Long Short-Term Memory (LSTM)-

Modell, (ii) ein klassisches RC-Modell und (iii) ein PINN.  

Als Referenz dienen dynamische Gebäudesimulationen in IDA ICE, welche Innenraumtemperaturen 

und Heiz-/Kühlleistungen unter einem historischen Wetterjahr bereitstellen. 

Die RC-Parameter werden mittels numerischer Integration und nichtlinearer Least-Squares-

Optimierung bestimmt, wobei die Parameter so angepasst werden, dass die simulierten 

Innenraumtemperaturen die in der Referenzsimulation berechneten Verläufe möglichst genau 

reproduzieren. Beim PINN erfolgt die Optimierung von RC-Parametern und Netzgewichten simultan, 

wobei die RC-Differenzialgleichungen als Regularisierungsterm in die Verlustfunktion eingehen. Das 

LSTM dient als flexible Black-Box-Referenz ohne physikalische Struktur. Bewertet werden sowohl die 
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Vorhersagegüte als auch die Dateneffizienz, also die Fähigkeit der Modelle, auch bei begrenzten 

Trainingsdaten robuste und physikalisch konsistente Vorhersagen zu liefern. 

Ergebnisse 

Bei einem Trainingsdatenumfang von 10 Tagen und gleichbleibender Temperaturregelung mit 

konstantem Sollwert und Hysterese erreichen alle Modelle ähnliche Genauigkeiten (Abbildung 1, linker 

Plot). Bei veränderter Temperaturregelung zeigen sich deutliche Unterschiede: Während das LSTM-

Modell in diesem Szenario seine Vorhersagefähigkeit einbüßt, bleiben das RC-Modell und das PINN 

stabil (Abbildung 1, rechter Plot). Insgesamt zeigt das PINN in beiden Szenarien die höchste 

Genauigkeit, insbesondere dann, wenn die Eingangsbedingungen von den Trainingsdaten abweichen. 

 

Abbildung 1: Der Vorhersagefehler (RMSE) der unterschiedlichen Modelle gegen den Prognosehorizont bei 
gleichbleibendem Temperatur-Sollwert und Hysterese (linke Abbildung) und bei verändertem Temperatur-Sollwert 
und Hysterese (rechte Abbildung). 
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