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Die zunehmende Einspeisung erneuerbarer Energien verschiebt die Herausforderungen von
Energiesystemen: Die Fahigkeit, Lasten zeitlich flexibel anzupassen, gewinnt gegentber einer reinen
Verbrauchsreduktion zunehmend an Bedeutung [1]. Gebdude kénnen hierzu einen wesentlichen
Beitrag leisten, indem ihre thermische Tragheit gezielt zur Lastverschiebung genutzt wird [2]. Um diese
Flexibilitdt in der Praxis erschlieBen zu kénnen, werden Modelle bendétigt, die trotz begrenzter
Gebaudeinformationen und eingeschrankter Datenlage sowohl die Heizlast zuverlassig vorhersagen als
auch die durch veréanderte Heizlast verursachten Temperaturanderungen prazise abbilden kénnen [3].

Ein wesentliches methodisches Problem ergibt sich dabei aus den Ublicherweise verfiigbaren
Gebdaudedaten: Innenraumtemperaturen werden meist in einem eng geregelten Komfortbereich
gehalten, sodass nur eine geringe Dynamik beobachtet werden kann und Abhangigkeiten von
wesentlichen EinflussgroRen, wie etwa der zugeflihrten Heizleistung, nur schwer lernbar sind [4].

Rein datengetriebene Modelle haben unter diesen Bedingungen Schwierigkeiten: Ohne physikalisches
Vorwissen bendtigen sie hinreichend variierende Systemzusténde, die geniigend Information enthalten,
um belastbare Zusammenhénge zu erlernen. Bei unzureichender Anregung kdnnen die abgeleiteten
Modelle zwar die Trainingsdaten reproduzieren, liefern unter zuvor nicht beobachteten Kombinationen
von Einflussgrof3en jedoch haufig physikalisch inkonsistente Prognosen [5].

Physikalisch strukturierte Ansatze wie RC-Modelle begegnen diesem Problem, indem sie
Energiebilanzgleichungen als Modellgrundlage nutzen. Obwohl sie von ihrer induktiven Struktur
profitieren, sind ihre Parameter unter realen Messbedingungen nicht immer eindeutig identifizierbar;
zusatzlich beeintréachtigen unbeobachtete Einflisse wie interne Warmegewinne durch Personen und
Geréate oder nutzerinduzierte Liftung die Parameteridentifikation und damit auch die Prognosequalitéat

[6].

Physics-Informed Neural Networks (PINNs) kombinieren RC-Modellstrukturen mit der Flexibilitat
neuronaler Netze und adressieren damit sowohl den geringen Informationsgehalt der Daten als auch
die Herausforderungen der Parameteridentifikation. Durch die Einbettung der Energiebilanzgleichungen
in die Verlustfunktion des neuronalen Netzes werden RC-Parameter und Netzgewichte gemeinsam
optimiert. Das Modell lernt eine glatte Approximation der Temperaturverlaufe, wéahrend die
physikalische Verlustfunktion sicherstellt, dass die vorhergesagten Temperaturanderungen den
thermodynamischen GesetzmaRigkeiten entsprechen [7]. Dadurch entstehen Modelle, die sowohl
datenbasiert plausibel als auch physikalisch konsistent sind [8].

Methodik

Um die Eignung von PINNSs fiir die Vorhersage der Innenraumtemperatur zu untersuchen, werden drei
Modellklassen miteinander verglichen: (i) ein datengetriebenes Long Short-Term Memory (LSTM)-
Modell, (ii) ein klassisches RC-Modell und (iii) ein PINN.

Als Referenz dienen dynamische Gebaudesimulationen in IDA ICE, welche Innenraumtemperaturen
und Heiz-/Kihlleistungen unter einem historischen Wetterjahr bereitstellen.

Die RC-Parameter werden mittels numerischer Integration und nichtlinearer Least-Squares-
Optimierung bestimmt, wobei die Parameter so angepasst werden, dass die simulierten
Innenraumtemperaturen die in der Referenzsimulation berechneten Verlaufe moglichst genau
reproduzieren. Beim PINN erfolgt die Optimierung von RC-Parametern und Netzgewichten simultan,
wobei die RC-Differenzialgleichungen als Regularisierungsterm in die Verlustfunktion eingehen. Das
LSTM dient als flexible Black-Box-Referenz ohne physikalische Struktur. Bewertet werden sowohl die
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Vorhersagegite als auch die Dateneffizienz, also die Fahigkeit der Modelle, auch bei begrenzten
Trainingsdaten robuste und physikalisch konsistente Vorhersagen zu liefern.

Ergebnisse

Bei einem Trainingsdatenumfang von 10 Tagen und gleichbleibender Temperaturregelung mit
konstantem Sollwert und Hysterese erreichen alle Modelle dhnliche Genauigkeiten (Abbildung 1, linker
Plot). Bei veranderter Temperaturregelung zeigen sich deutliche Unterschiede: Wahrend das LSTM-
Modell in diesem Szenario seine Vorhersagefahigkeit einbii3t, bleiben das RC-Modell und das PINN
stabil (Abbildung 1, rechter Plot). Insgesamt zeigt das PINN in beiden Szenarien die hdchste
Genauigkeit, insbesondere dann, wenn die Eingangsbedingungen von den Trainingsdaten abweichen.
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Abbildung 1: Der Vorhersagefehler (RMSE) der unterschiedlichen Modelle gegen den Prognosehorizont bei
gleichbleibendem Temperatur-Sollwert und Hysterese (linke Abbildung) und bei verandertem Temperatur-Sollwert
und Hysterese (rechte Abbildung).
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