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Introduction

To meet the targets set by the German federal government, greenhouse gas emissions in the building
sector must be drastically reduced in the coming years [1]. One way to achieve this goal is the
widespread installation of heat pumps (HP) for space heating and domestic hot water supply. During
periods of high heat demand, photovoltaic (PV) generation in our geographic latitudes is generally
relatively low [2]. Nevertheless, accurate HP load forecasting supports the efficient utilization of PV
energy and, importantly, helps to avoid overloading the grid connection point [3]. Effective coordination
based on forecasts enables optimized energy management, ensuring both increased self-consumption
of PV energy and grid reliability [3, 4].

Methodology

Related Work and Selection of the Forecasting Methods

Demands vary greatly from building to building, which is why not every load forecasting model is suitable
for every application [5]. Related work often focuses on forecasting aggregated HP loads [6], e.g. in
energy communities [7], in commercial buildings [8—10] or with a detailed measurement concept which
is not universally scalable [4]. One reason is the high level of uncertainty, in particular due to the highly
individual nature of consumption patterns [5, 11]. Although no direct comparison is possible,
Semmelmann [7] shows that the Transformer model outperforms Random-Forecast, Long Short-Term
Memory (LSTM) and Extreme Gradient Boosting (XGBoost) forecasting the HP load. In Addition, Wang
[12] recommends XGBoost for a day-ahead forecast, comparing LSTM und XGBoost. Consequently,
this study comparatively evaluates two state-of-the-art forecasting methodologies: The Transformer, a
deep learning model designed to capture long-range temporal dependencies, and XGBoost, a gradient-
boosted decision tree algorithm with strong performance on tabular data.

Data Preprocessing, Analysis and Feature Selection

For this work, real-world load data from residential air source heat pumps was used: A dataset from the
United Kingdom [13] (306 HP systems) and a dataset from Germany [14] (two HP systems).The data
preprocessing involves outlier detection, interpolation, dropping sequences with larger gaps and
resampling to a consistent time resolution of 15 minutes. The datasets were thoroughly analysed to
gain a better understanding of consumption patterns and, consequently, their influence on feature
selection. From this analysis, it can be inferred that the highly individual load patterns can be classified
into categories, which is also evident from examining the autocorrelation function: strongly recurring
and weakly recurring patterns.

The feature selection is performed using correlation analysis and Random Forest analysis [7]. The
result corresponds to comparable literature [7]. Various features are selected, including the outside
temperature, past load and temperature values, and cyclical variables. Additionally, models are trained
with specific features omitted to investigate their individual impact on forecast accuracy. This approach
allows for a systematic evaluation of feature relevance and the identification of the most influential
predictors for the forecasting task.

" Technische Universitat Braunschweig, elenia Institute for High Voltage Technology and Power
Systems, Schleinitzstral’e 23, Braunschweig, Germany, Tel.;: +49 531 391 9726, m.luedecke@tu-
braunschweig.de, Homepage


https://www.tu-braunschweig.de/elenia/team/wimi/luedecke-marcel

19. Symposium Energieinnovation, 11.-13.02.2026, Graz/Osterreich

Model Training and Forecast Assessment

A linear regression model and a daily persistence model serve as benchmarks due to their ease of
implementation. To increase the accuracy of the forecasts, the hyperparameters of the Transformer
and XGBoost models were optimised, with early stopping also being applied.

Table 1 shows a comparison including benchmark models for different metrics. The coefficient of
determination (R?), the nRMSE normalised to the value range, and a peak error are shown. The peak
error is defined as the difference between the actual value and the forecast value for all points in time
where the forecast is smaller than the actual value. Since the quality of the forecast depends on the
extent to which the pattern is recurrent, the evaluation is based on a time series with a strong pattern
(EOH2504) and one with a less strong pattern (EOH1700) from the UK data set.

Further analysis includes applying the models to unknown data, examining models with different
features, and further comparisons of the models based on the test data.

Table 1: Comparison of Forecasting Methods via different error metrics

EOH1700 EOH2504
R? nRMSE Peaker R? nRMSE Peaker
Lin. Regr. 0.74 0.075 798.16 0.408 0.078 358.10
Transformer 0.80 0.066 713.90 0.775 0.048 293.25
XGBoost 0.81 0.064 777.52 0.838 0.041 246.08
Persistence 0.55 0.099 917.87 0.587 0.078 358.10
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