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Introduction 

To meet the targets set by the German federal government, greenhouse gas emissions in the building 

sector must be drastically reduced in the coming years [1]. One way to achieve this goal is the 

widespread installation of heat pumps (HP) for space heating and domestic hot water supply. During 

periods of high heat demand, photovoltaic (PV) generation in our geographic latitudes is generally 

relatively low [2]. Nevertheless, accurate HP load forecasting supports the efficient utilization of PV 

energy and, importantly, helps to avoid overloading the grid connection point [3]. Effective coordination 

based on forecasts enables optimized energy management, ensuring both increased self-consumption 

of PV energy and grid reliability [3, 4]. 

Methodology 

Related Work and Selection of the Forecasting Methods 

Demands vary greatly from building to building, which is why not every load forecasting model is suitable 

for every application [5]. Related work often focuses on forecasting aggregated HP loads [6], e.g. in 

energy communities [7], in commercial buildings [8–10] or with a detailed measurement concept which 

is not universally scalable [4]. One reason is the high level of uncertainty, in particular due to the highly 

individual nature of consumption patterns [5, 11]. Although no direct comparison is possible, 

Semmelmann [7] shows that the Transformer model outperforms Random-Forecast, Long Short-Term 

Memory (LSTM) and Extreme Gradient Boosting (XGBoost)  forecasting the HP load. In Addition, Wang 

[12] recommends XGBoost for a day-ahead forecast, comparing LSTM und XGBoost. Consequently, 

this study comparatively evaluates two state-of-the-art forecasting methodologies: The Transformer, a 

deep learning model designed to capture long-range temporal dependencies, and XGBoost, a gradient-

boosted decision tree algorithm with strong performance on tabular data. 

Data Preprocessing, Analysis and Feature Selection 

For this work, real-world load data from residential air source heat pumps was used: A dataset from the 

United Kingdom [13] (306 HP systems) and a dataset from Germany [14] (two HP systems).The data 

preprocessing involves outlier detection, interpolation, dropping sequences with larger gaps and 

resampling to a consistent time resolution of 15 minutes. The datasets were thoroughly analysed to 

gain a better understanding of consumption patterns and, consequently, their influence on feature 

selection. From this analysis, it can be inferred that the highly individual load patterns can be classified 

into categories, which is also evident from examining the autocorrelation function: strongly recurring 

and weakly recurring patterns. 

The feature selection is performed using correlation analysis and Random Forest analysis [7]. The 

result corresponds to comparable literature [7]. Various features are selected, including the outside 

temperature, past load and temperature values, and cyclical variables. Additionally, models are trained 

with specific features omitted to investigate their individual impact on forecast accuracy. This approach 

allows for a systematic evaluation of feature relevance and the identification of the most influential 

predictors for the forecasting task. 
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Model Training and Forecast Assessment 

A linear regression model and a daily persistence model serve as benchmarks due to their ease of 

implementation. To increase the accuracy of the forecasts, the hyperparameters of the Transformer 

and XGBoost models were optimised, with early stopping also being applied. 

Table 1 shows a comparison including benchmark models for different metrics. The coefficient of 

determination (R²), the nRMSE normalised to the value range, and a peak error are shown. The peak 

error is defined as the difference between the actual value and the forecast value for all points in time 

where the forecast is smaller than the actual value. Since the quality of the forecast depends on the 

extent to which the pattern is recurrent, the evaluation is based on a time series with a strong pattern 

(EOH2504) and one with a less strong pattern (EOH1700) from the UK data set. 

Further analysis includes applying the models to unknown data, examining models with different 
features, and further comparisons of the models based on the test data.  

Table 1: Comparison of Forecasting Methods via different error metrics 

 EOH1700 EOH2504 

 R2 nRMSE PeakErr R2 nRMSE PeakErr 

Lin. Regr. 0.74 0.075 798.16 0.408 0.078 358.10 

Transformer 0.80 0.066 713.90 0.775 0.048 293.25 

XGBoost 0.81 0.064 777.52 0.838 0.041 246.08 

Persistence 0.55 0.099 917.87 0.587 0.078 358.10 
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