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Introduction 

With rising energy demand as well as rising renewable energy generation, flexible energy storage 

becomes increasingly important for grid stability and energy efficiency. The concept of energy 

communities (ECs) is proposing a local renewable generation and consumption method, gaining 

popularity in the European Union [1]. Energy generation and demand forecasting provides a basis for 

grid flexibility calculation. The presented model uses stochastic non-linear programming to optimize the 

energy cost via power-to-heat sector coupling of an EC by implementing space-heating (SH) and 

domestic hot water (DHW) heat pump systems into simulated EC buildings.  

Methodology 

The simulation is realized with the mpi-sppy package in Python [2]. As a grey-box approach to a heating 

simulator, the thermal system is split into internal and external parameters [3]. Internal parameters define 

building geometry, room and wall heat capacity, heat losses, occupation, a hot water tank model and 

separated space and water heat pumps with electrical power, performance parameters as well as 

temperature bounds. External parameters include a meteorological forecast time series from the 

German Weather Service (DWD) for a specific set of coordinates which drive the model via ambient 

temperature, solar irradiance and wind speed [4]. The mpi-sppy extension allows to embed the resulting 

thermal dynamics into stochastic optimization as discrete energy balance equations for room and tank 

temperatures, along with draw events for different occupancy scenarios.  

As shown in Figure 1, the EC uses an internal battery as energy storage, which can be charged through 

the grid as well as through local PV generation, using the meteorological forecast provided by the DWD 

to compute stochastic energy generation scenarios. The baseload demand of the EC must always be 

met and is modeled as a continuous sinewave with an additional randomizer for this example. As shown 

in Figure 1, the SH heat pump can operate as a space heating and cooling mechanism to keep the 

temperature inside the bounds, set to a minimum of 20°C and a maximum of 23°C in this example. The 

DHW temperature is set to a maximum of 45°C which must be provided when a draw event is triggered, 

relying on three usage scenarios. 

The heat demand is enforced via penalty functions, which are combined with electricity cost alongside 

battery and optional EV penalties, to compute an objective function for the solver.  

𝐶ℎ𝑝(𝑡) = √𝑒Δ𝑇𝑚𝑖𝑛(𝑡)+1 + 𝑒Δ𝑇𝑚𝑎𝑥(𝑡)+1 (1) 

The objective function includes all penalty costs into a minimizer. The weight of the penalties changes 

the cost functions behavior, so adjusting the magnitude of the penalty cost directly influences the non-

optimal regions of the function. 

𝐶(𝑡)  =   arg min ∑ (𝑐𝑒𝑙(𝑡)2 + 𝑐𝑠𝑜𝑐(𝑡) + 𝑐𝑐𝑎𝑟(𝑡) + 𝑐𝑠ℎ(𝑡) + 𝑐𝑑ℎ𝑤(𝑡))  
𝑡∈𝑇  (2) 

In scenarios with SH and DHW enabled, heating demand competes with battery charging while the 

solver prioritizes avoiding temperature penalties over maximizing battery arbitrage. Temperatures are 

kept close to their comfort midpoints to preserve electrical flexibility for meeting demand constraints. 

The solver is powering the heating and cooling mechanisms of the SH system simultaneously, which is 

cost-optimal, given the negative energy prices during that period. The results demonstrate that 

integrating a heat pump based heating model into the optimizer can provide additional flexibility for cost 

effectiveness and can support the use of buildings as energy sinks, relying on the batteries state of 

charge and the energy price at each timestep. The potential of heat pumps for energy storage and the 

usage of model-predictive control is evaluated through the temporal shift of electrical load under the 
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given constraints. Analysing the changes in total energy cost, battery utilisation, room and tank 

temperatures relative to a reference case without flexible operation can provide a more accurate 

assessment of the stochastic optimizer’s efficiency. The accuracy of the optimization problem may be 

increased by implementing predicted energy prices for the given time interval instead of approximating 

an energy price curve. The use of a standardised baseload, including the fitting energy consumption 

data, may increase the solvers accuracy. 

 

Figure 1: Power and cost in relation 
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