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Motivation

The deployment of decentralized photovoltaic (PV) systems continues to progress rapidly in Germany.
Installed system numbers have risen markedly in recent years, primarily driven by the uptake of small-
scale plug-in balcony PV units [1]. This development indicates that PV systems are both economically
attractive and widely accepted by the public. However, the ongoing capacity expansion is accompanied
by tightening legal and regulatory constraints. For instance, feed-in remuneration is suspended during
periods of negative electricity spot market prices [2]. Consequently, the efficient on-site use of self-
generated PV energy gains further importance [3]. To enable this, accurate and reliable short-term PV
generation forecasts are essential.

Methodology

Selection of Forecasting Method

The choice of forecasting method is driven by the objective of generating short-term PV power forecasts
with high accuracy and robust generalization capability. Against this background, a recurrent Long
Short-Term Memory (LSTM) network and a Transformer-based model were selected, as both
approaches are identified in recent studies being effective for complex time series forecasting. The
choice of LSTM and Transformer models enables a systematic comparison between two representative
and complementary architecture families reflecting methodological advances in recent years. LSTM
provides a well-understood and widely validated standard in the PV literature, while the Transformer
represents state-of-the-art in modelling global dependencies and scalable time series processing. [3-6]

Error distribution over the day Data Selection and Preprocessing
The data used in this research combines PV power [7-11]
0.3 and weather datasets [12, 13] from various cities around
the world, with a focus on representing different climate
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Figure 1: Error Distribution over the day - LSTM  humidity, wind speed and lagged values.
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Model Training and Hyperparameter Tuning

The data of each profile were split into a 75% training, 10% validation, and 15% test ratio. The training
dataset was employed for model learning. In contrast, the validation dataset monitored the training
process and utilized potential termination criteria like early stopping [14]. The test dataset was reserved
for model evaluation. Since the dataset comprised data from nine different solar power plants, a 9-group
cross-validation approach was applied, where each group corresponds to one plant. This method
ensures that the model’s performance is robustly evaluated and generalizes well across different
locations [15]. To reduce the risk of overfitting, the models hyperparameter were optimized through
Bayesian Optimization. The mean squared error (MSE) was used as the error metric for the loss
function, as it assigns greater weight to larger prediction errors.

Forecast Assessment

For assessing forecast accuracy, the average error course over a day was illustrated in Figure 1 for the
LSTM model, showing normalized values due to normalisation by the system peak power. It is evident
that there is a tendency to underestimate rather than overestimate particularly around noon. Despite
this, the LSTM model's average MSE of 0.0057 is higher than that of the Transformer model, which
achieves a lower average MSE of 0.0038. This indicates that the Transformer model exhibits superior
prediction accuracy in this evaluation, especially in reducing error during critical daytime periods when
PV output is highest.
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