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Motivation 

The deployment of decentralized photovoltaic (PV) systems continues to progress rapidly in Germany. 

Installed system numbers have risen markedly in recent years, primarily driven by the uptake of small-

scale plug-in balcony PV units [1]. This development indicates that PV systems are both economically 

attractive and widely accepted by the public. However, the ongoing capacity expansion is accompanied 

by tightening legal and regulatory constraints. For instance, feed-in remuneration is suspended during 

periods of negative electricity spot market prices [2]. Consequently, the efficient on-site use of self-

generated PV energy gains further importance [3]. To enable this, accurate and reliable short-term PV 

generation forecasts are essential. 

Methodology 

Selection of Forecasting Method 

The choice of forecasting method is driven by the objective of generating short-term PV power forecasts 

with high accuracy and robust generalization capability. Against this background, a recurrent Long 

Short-Term Memory (LSTM) network and a Transformer-based model were selected, as both 

approaches are identified in recent studies being effective for complex time series forecasting. The 

choice of LSTM and Transformer models enables a systematic comparison between two representative 

and complementary architecture families reflecting methodological advances in recent years. LSTM 

provides a well-understood and widely validated standard in the PV literature, while the Transformer 

represents state-of-the-art in modelling global dependencies and scalable time series processing. [3–6] 

Data Selection and Preprocessing 

The data used in this research combines PV power [7–11] 

and weather datasets [12, 13] from various cities around 

the world, with a focus on representing different climate 

zones. The dataset consists of several years in 15-minute 

resolution for the cities of Gaithersburg [7], Melbourne [8], 

Istanbul [9], Hongkong [10], and Bielefeld [11].  

In the preprocessing, outliers and missing values were 

removed to ensure a higher data quality. NAN- values 

were identified and replaced by zeros. Afterwards, zeros 

were interpolated.  

Feature Selection 

For assessing the relevance of commonly used features, 

correlation analysis and scatter plots were used. In 

addition, simple LSTM models were trained and 

assessed, where different feature combinations were 

applied. Used features are e.g. the shortwave radiation, 

temperature, angel of incidence, cloud coverage, relative 

humidity, wind speed and lagged values.  
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Model Training and Hyperparameter Tuning 

The data of each profile were split into a 75% training, 10% validation, and 15% test ratio. The training 

dataset was employed for model learning. In contrast, the validation dataset monitored the training 

process and utilized potential termination criteria like early stopping [14]. The test dataset was reserved 

for model evaluation. Since the dataset comprised data from nine different solar power plants, a 9-group 

cross-validation approach was applied, where each group corresponds to one plant. This method 

ensures that the model’s performance is robustly evaluated and generalizes well across different 

locations [15]. To reduce the risk of overfitting, the models hyperparameter were optimized through 

Bayesian Optimization. The mean squared error (MSE) was used as the error metric for the loss 

function, as it assigns greater weight to larger prediction errors.  

Forecast Assessment 

For assessing forecast accuracy, the average error course over a day was illustrated in Figure 1 for the 
LSTM model, showing normalized values due to normalisation by the system peak power. It is evident 
that there is a tendency to underestimate rather than overestimate particularly around noon. Despite 
this, the LSTM model's average MSE of 0.0057 is higher than that of the Transformer model, which 
achieves a lower average MSE of 0.0038. This indicates that the Transformer model exhibits superior 
prediction accuracy in this evaluation, especially in reducing error during critical daytime periods when 
PV output is highest. 
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