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METHODEN DER ERKLARBARKEIT VON REINFORCEMENT LEARNING
MODELLEN ZUR TOPOLOGIEOPTIMIERUNG IN
UBERTRAGUNGSNETZEN

Harald JENDRIAN', Reinaldo TONKOSKI', llja KRYBUS?

Hintergrund

Der zunehmende Zubau von Windkraft- und Photovoltaikanlagen sowie GroR3batteriespeichern erhoht
die Komplexitiat der Netzfiihrung in 380-/220-kV-Ubertragungsnetzen. Die daraus resultierenden
strom- und spannungsbedingten Engpasse werden ublicherweise durch Redispatch behoben.
Alternativ kdbnnen Schalthandlungen N-1-Befunde beheben oder Redispatchpotential verringern. Die
kombinatorische Vielfalt der Schaltgerate in Umspannwerken erschwert jedoch das Auffinden
optimierter Topologien, weshalb diese in der Netzeinsatzplanung oft unzureichend bericksichtigt
werden [1].

Dieser Beitrag stellt einen Reinforcement Learning Ansatz zur Topologieoptimierung fiir ein deutsches
Ubertragungsnetz vor (max. Erzeugungsleistung: 4,6 GW, Jahreshéchstlast: 7,7 GW). Ein Agent
interagiert mit einer Environment und erhalt als Observation Space u.a. Betriebsspannungen,
Leitungsauslastungen sowie Einspeise- und Lastzeitreihen. Das Optimierungsziel (Reward) ist die
Minimierung der maximalen Leitungsauslastung; Konvergenzfehler und spannungslose Knoten
werden durch Penalties bestraft. Der Action Space umfasst das diskrete Betatigen von Leistungs- und
Trennschaltern. Um praxisnahe Schaltzustande abzubilden, werden Schalter als Grouping Actions
zusammengefasst; unzulassige Handlungen — etwa das gleichzeitige Belegen einer Leitung auf zwei
Sammelschienen — werden durch Action Masking unterbunden. So ermdglicht der Agent die optimale
Kombination von Ein-/Ausschaltungen von Leitungen, das Betatigen von Querkupplungen und das
Durchfihren von Sammelschienenwechsel in den Umspannwerken. Zum Einsatz kommt ein maskable
Proximal Policy Optimization (maskablePPQO) Algorithmus, der iterativ Policy und Value Function
aktualisiert. Die Implementierung basiert u.a. auf Simbench Netzmodellen, pandapower,
stable-baselines3, gymnasium und TensorBoard. Der Anwendungsfall adressiert eine
vorausschauende Netzeinsatzplanung, in der topologische Massnahmen fiir den Folgetag bestimmt
werden — etwa als Non-costly Remedial Actions im Rahmen europaischer Day-Ahead Congestion
Forecast (DACF) Prozesse. Abbildung 1 zeigt einen beispielhaften Dezembertag, an dem 12-20
Querkupplungen gedffnet und 12—27 Sammelschienenwechsel vorgeschlagen werden; in den friihen
Abendstunden empfiehlt der Agent zusatzlich das kurzfristige Ausschalten einer Leitung. Dadurch
sinkt die durchschnittliche maximale Netzauslastung von 108,99 % auf 85,57 %. Zudem zeigt der
Tagesverlauf, dass diese MaRnhahmen zwischen 00:30 und 5:30 Uhr N-1-Befunde beseitigen und
Redispatchabrufe vermeiden.

DAYAHEAD OPERATIONAL SCHEDULE

Topology Options Indicator 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 (...)

Reference Topology N-1 Max line loading (before) 135.0 133.4 159.7 128.1 134.4 136.1 157.3 129.3 131.9 132.4 137.1

Agent 1 N-1 Max line loading (after) 94.0 140.4 118.2 93.2 152.9 86.7 129.3 96.9 100.6 152.4 110.5
Reduction rate 30.4 -5.3 26.0 27.3 -13.7 36.3 17.8 25.1 23.7 -15.1 19.4
#Nodesplitting 16 17 19 18 14 17 15 18 17 15 16
#BusAssignment 18 20 19 21 20 23 20 24 17 19 13
#LineDisconnect 0 0 o 0 o 0 0 o 0 0 0
#LineConnect 0 0 [ 0 o 0 0 0 0 0 0

Abbildung 1: Tabellarische Ubersicht iiber den Einsatzplan der topologischen Massnahmen 25.12.

' Technische Universitat Miinchen, harald.jendrian@tum.de, reinaldo.tonkoski@tum.de
2 BearingPoint GmbH, ilja.krybus@bearingpoint.com



9. S um Energiei . 13.02.2026. Graz/¢ i

Jede Topologieoption wird mit einer Ausfallvariantenrechnung auf ihre Wirksamkeit hin tGberprift — es
fallt auf, dass Netzsituationen entstehen kénnen, die zwar zu einer N-O Reduktion fihren, jedoch in
vermaschten Netzen nicht unbedingt zu einer N-1 Reduktion beitragen. Um Entscheidungen besser
nachvollziehen zu kénnen und um Vertrauen in den Agenten zu schaffen, wird in diesem Beitrag die
Netzsicherheitsrechnung, um Methoden der Erklarbarkeit (Explainable Al, XAl) erweitert.

Methodik

Mithilfe von SHapley Additive exPlanations (SHAP) lasst sich das Verhalten des maskablePPO
Agenten analysieren, um den Entscheidungsprozess erklaren zu kdnnen. Fir jedes Eingabemerkmal
(Feature) wird dessen marginaler Beitrag zur Modellvorhersage (Probability) quantifiziert, indem
systematisch berechnet wird, wie sich die Ausgabe bei An- oder Abwesenheit dieses Merkmals
verandert [2]. Um die Berechnungskomplexitdt im Beobachtungsraum (Observation) zu reduzieren,
kommt die KernelSHAP Approximation in Kombination mit einer Gruppierung semantisch
zusammengehdoriger Merkmale zum Einsatz. Anhand der SHAP Werte lasst sich beschreiben, welche
Merkmale den Agenten am starksten in seinen Aktionen (z.B. Sammelschienenwechsel) beeinflussen.
Darlber hinaus ermdglicht SHAP die Bewertung, weshalb der Agent fir eine ausgewahlte
Netzsituation genau diesen Schaltzustand vorschlagt.

Erganzend werden Entscheidungsbdaume (Decision Trees) angewandt, um interpretierbare Regeln
abzuleiten. Ein Entscheidungsbaum ist ein Verfahren, das Daten durch eine hierarchische Abfolge von
binaren Entscheidungen klassifiziert. Ausgehend von einem Wurzelknoten wird der Datensatz
sukzessive anhand von Schwellenwerten einzelner Merkmale (Features) in Teilmengen aufgespalten,
bis die Blattknoten eine eindeutige Klassenzuordnung ermdglichen. Die Auswahl der Splitkriterien
erfolgt durch Metriken wie den Gini-Index oder die Informationsentropie, die den Informationsgewinn
maximieren [3]. Im vorliegenden Anwendungsfall approximiert der Entscheidungsbaum das Verhalten
des trainierten Agenten und extrahiert daraus lesbare If-Then-Regeln, die dem Betriebsplaner oder
Operator die Bewertung der Topologievorschlage erleichtern.

Erkenntnisse

Der Beitrag zeigt eine Topologieoptimierung eines Ubertragungsnetzes fiir einen beispielhaften
Dezembertag — die Topologieoptionen sind mit einer Netzsicherheitsrechnung tberprift und mit SHAP
untersucht. Die SHAP-Werte lassen sich nicht vollstdndig ermitteln, da die notwendigen Logits bzw.
Probabilities nicht zielfUhrend extrahiert werden koénnen. Dies macht Schwachstellen im Modell
sichtbar, die u.a. mit einer VergroRerung des Neuronalen Netzes sowie einer entsprechenden
Hyperparameteroptimierung adressiert werden.

Ergénzend ermdglichen die aus Decision Trees abgeleiteten Regeln eine zlgige Bewertung der
Topologieoptimierung. Es zeigt sich, dass der Agent einen vorwiegend zeitlichen Verlauf erlernt; die
Schaltzustdnde werden stark von Jahres- und Tageszeit beeinflusst. Fur Querkupplung 4431 ist
beispielsweise festzuhalten, dass diese an Wintertagen in der Spéatschicht (ab ca. 18:30 Uhr) sowie
Nachtschicht stets geoffnet und in der Friihschicht eher geschlossen betrieben wird — was mit dem
operativen Tagesgeschaft einer Ausschaltplanung harmoniert. Als If-Then-Regel fir den Operator
formuliert: Der Schalter folgt der elektrischen Last — er o6ffnet in den Abend-, Nacht- und
Morgenstunden (sinkende Last) und schlief3t tagsiiber (steigende Last).
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