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Hintergrund  

Der zunehmende Zubau von Windkraft- und Photovoltaikanlagen sowie Großbatteriespeichern erhöht 
die Komplexität der Netzführung in 380-/220-kV-Übertragungsnetzen. Die daraus resultierenden 
strom- und spannungsbedingten Engpässe werden üblicherweise durch Redispatch behoben. 
Alternativ können Schalthandlungen N-1-Befunde beheben oder Redispatchpotential verringern. Die 
kombinatorische Vielfalt der Schaltgeräte in Umspannwerken erschwert jedoch das Auffinden 
optimierter Topologien, weshalb diese in der Netzeinsatzplanung oft unzureichend berücksichtigt 
werden [1]. 

Dieser Beitrag stellt einen Reinforcement Learning Ansatz zur Topologieoptimierung für ein deutsches 
Übertragungsnetz vor (max. Erzeugungsleistung: 4,6 GW, Jahreshöchstlast: 7,7 GW). Ein Agent 
interagiert mit einer Environment und erhält als Observation Space u.a. Betriebsspannungen, 
Leitungsauslastungen sowie Einspeise- und Lastzeitreihen. Das Optimierungsziel (Reward) ist die 
Minimierung der maximalen Leitungsauslastung; Konvergenzfehler und spannungslose Knoten 
werden durch Penalties bestraft. Der Action Space umfasst das diskrete Betätigen von Leistungs- und 
Trennschaltern. Um praxisnahe Schaltzustände abzubilden, werden Schalter als Grouping Actions 
zusammengefasst; unzulässige Handlungen – etwa das gleichzeitige Belegen einer Leitung auf zwei 
Sammelschienen – werden durch Action Masking unterbunden. So ermöglicht der Agent die optimale 
Kombination von Ein-/Ausschaltungen von Leitungen, das Betätigen von Querkupplungen und das 
Durchführen von Sammelschienenwechsel in den Umspannwerken. Zum Einsatz kommt ein maskable 
Proximal Policy Optimization (maskablePPO) Algorithmus, der iterativ Policy und Value Function 
aktualisiert. Die Implementierung basiert u.a. auf Simbench Netzmodellen, pandapower, 
stable-baselines3, gymnasium und TensorBoard. Der Anwendungsfall adressiert eine 
vorausschauende Netzeinsatzplanung, in der topologische Massnahmen für den Folgetag bestimmt 
werden – etwa als Non-costly Remedial Actions im Rahmen europäischer Day-Ahead Congestion 
Forecast (DACF) Prozesse. Abbildung 1 zeigt einen beispielhaften Dezembertag, an dem 12–20 
Querkupplungen geöffnet und 12–27 Sammelschienenwechsel vorgeschlagen werden; in den frühen 
Abendstunden empfiehlt der Agent zusätzlich das kurzfristige Ausschalten einer Leitung. Dadurch 
sinkt die durchschnittliche maximale Netzauslastung von 108,99 % auf 85,57 %. Zudem zeigt der 
Tagesverlauf, dass diese Maßnahmen zwischen 00:30 und 5:30 Uhr N-1-Befunde beseitigen und 
Redispatchabrufe vermeiden. 

 

Abbildung 1: Tabellarische Übersicht über den Einsatzplan der topologischen Massnahmen 25.12. 
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Jede Topologieoption wird mit einer Ausfallvariantenrechnung auf ihre Wirksamkeit hin überprüft – es 
fällt auf, dass Netzsituationen entstehen können, die zwar zu einer N-0 Reduktion führen, jedoch in 
vermaschten Netzen nicht unbedingt zu einer N-1 Reduktion beitragen. Um Entscheidungen besser 
nachvollziehen zu können und um Vertrauen in den Agenten zu schaffen, wird in diesem Beitrag die 
Netzsicherheitsrechnung, um Methoden der Erklärbarkeit (Explainable AI, XAI) erweitert. 

Methodik 
Mithilfe von SHapley Additive exPlanations (SHAP) lässt sich das Verhalten des maskablePPO 
Agenten analysieren, um den Entscheidungsprozess erklären zu können. Für jedes Eingabemerkmal 
(Feature) wird dessen marginaler Beitrag zur Modellvorhersage (Probability) quantifiziert, indem 
systematisch berechnet wird, wie sich die Ausgabe bei An- oder Abwesenheit dieses Merkmals 
verändert [2]. Um die Berechnungskomplexität im Beobachtungsraum (Observation) zu reduzieren, 
kommt die KernelSHAP Approximation in Kombination mit einer Gruppierung semantisch 
zusammengehöriger Merkmale zum Einsatz. Anhand der SHAP Werte lässt sich beschreiben, welche 
Merkmale den Agenten am stärksten in seinen Aktionen (z.B. Sammelschienenwechsel) beeinflussen. 
Darüber hinaus ermöglicht SHAP die Bewertung, weshalb der Agent für eine ausgewählte 
Netzsituation genau diesen Schaltzustand vorschlägt. 

Ergänzend werden Entscheidungsbäume (Decision Trees) angewandt, um interpretierbare Regeln 
abzuleiten. Ein Entscheidungsbaum ist ein Verfahren, das Daten durch eine hierarchische Abfolge von 
binären Entscheidungen klassifiziert. Ausgehend von einem Wurzelknoten wird der Datensatz 
sukzessive anhand von Schwellenwerten einzelner Merkmale (Features) in Teilmengen aufgespalten, 
bis die Blattknoten eine eindeutige Klassenzuordnung ermöglichen. Die Auswahl der Splitkriterien 
erfolgt durch Metriken wie den Gini-Index oder die Informationsentropie, die den Informationsgewinn 
maximieren [3]. Im vorliegenden Anwendungsfall approximiert der Entscheidungsbaum das Verhalten 
des trainierten Agenten und extrahiert daraus lesbare If-Then-Regeln, die dem Betriebsplaner oder 
Operator die Bewertung der Topologievorschläge erleichtern. 

Erkenntnisse  

Der Beitrag zeigt eine Topologieoptimierung eines Übertragungsnetzes für einen beispielhaften 
Dezembertag – die Topologieoptionen sind mit einer Netzsicherheitsrechnung überprüft und mit SHAP 
untersucht. Die SHAP-Werte lassen sich nicht vollständig ermitteln, da die notwendigen Logits bzw. 
Probabilities nicht zielführend extrahiert werden können. Dies macht Schwachstellen im Modell 
sichtbar, die u.a. mit einer Vergrößerung des Neuronalen Netzes sowie einer entsprechenden 
Hyperparameteroptimierung adressiert werden. 

Ergänzend ermöglichen die aus Decision Trees abgeleiteten Regeln eine zügige Bewertung der 
Topologieoptimierung. Es zeigt sich, dass der Agent einen vorwiegend zeitlichen Verlauf erlernt; die 
Schaltzustände werden stark von Jahres- und Tageszeit beeinflusst. Für Querkupplung 4431 ist 
beispielsweise festzuhalten, dass diese an Wintertagen in der Spätschicht (ab ca. 18:30 Uhr) sowie 
Nachtschicht stets geöffnet und in der Frühschicht eher geschlossen betrieben wird – was mit dem 
operativen Tagesgeschäft einer Ausschaltplanung harmoniert. Als If-Then-Regel für den Operator 
formuliert: Der Schalter folgt der elektrischen Last – er öffnet in den Abend-, Nacht- und 
Morgenstunden (sinkende Last) und schließt tagsüber (steigende Last). 
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