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Introduction and Motivation 

The transition of energy systems towards renewable energy sources requires a detailed representation 

of the intricacies of each renewable technology. One major difference between most renewable energy 

sources and fossil-based technologies is their inherent intermittency and limited dispatchability. To 

achieve a 100% renewable energy system with photovoltaic (PV) and wind generators, storage 

technologies are required to counterbalance this intermittency and still have a reliable system. 

Hydropower, on the other hand, offers some flexibility to shift energy output throughout the day (through 

hydropeaking for run-of-river plants) or even between seasons (for (pumped-)hydro-storage plants or 

large hydro-reservoirs). Therefore, hydropower is a valuable asset, especially for countries such as 

Austria, Norway, or Brazil, where hydropower plays a significant role in power production. 

Previous work has shown the impact of different methods to model the physical and regulatory 

constraints of hydropower generators on results of Energy System Optimization Models (e.g., [1], [2]). 

Nonetheless, acquiring accurate inflows as data input for such models remains challenging due to 

limited data availability and computationally expensive weather simulations. Typically, only monthly or 

even yearly aggregated data is publicly available. In this work, we focus on the hidden model biases 

when assuming aggregated, constant inflows compared to using time-variant, hourly inflow data, 

motivating the importance of detailed time-series data, which is already the standard for wind and PV.  

Experimental Setup 

The experiments are conducted using the established NREL-118 bus test system [3], which has a 

network of 186 transmission lines split into 3 zones and 41 hydropower plants, in addition to other energy 

sources such as thermal power plants, PV and wind generators. We use the Low-carbon Expansion 

Generation Optimization (LEGO) model [4] to optimize the given system, both in terms of generation 

expansion and operation with a DC optimal power flow. To identify differences in model decisions more 

easily, the original input data is adjusted by increasing the demand by 30% and the production capacity 

of renewables (hydropower inflow, PV and wind) by 50%; however, the fundamental results remain 

consistent even if the scaling is not applied.   

Within the test system, all thermal, PV and wind generators are defined as investable assets, whereas 

hydropower is treated as existing infrastructure. Regarding the input data, a benchmark result is 

determined based on the original data provided, where each hydropower plant has a time-variant 

production capability in hourly resolution throughout the year. This result is then compared to an instance 

where hydropower generation is averaged over the entire year.  

Results 

The optimization results obtained are of course dependent on the individual case, but for the given 

system we observe an objective function value that is 4% smaller when using time-variant inflow data 

compared to using constant data (1636 M€ vs. 1702 M€, including cost for investment decisions and 

operation). Looking more closely at individual investment decisions reveals even greater disparities (see 

Figure 1 for details). Especially for investments in renewables, an increased investment of up to almost 
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400% can be observed. Even for zone 1, the area with the largest production capacity, the investment 

in solar generators is 16% higher. This suggests that the model manages some variability via its thermal 

generators and their ramping constraints, though only to a limited extent. When the hydropower plants 

are time-variant, the ramping capabilities of the thermal generators are required to compensate for their 

fluctuations. Conversely, if constant inflow data is supplied, the model invests more into solar production 

since it seems that the system can handle more variability.  

 

Figure 1: Comparison of invested generation capacity in MW per technology and zone with time-variant or 
constant inflow data. Technologies with limited differences or investments below 100 MW are in category “Other”. 

Conclusion and Future Work 

We have experimentally shown the differences in model results when using more realistic time-variant, 

hourly inflow data compared to frequently available constant data averaged over individual months or 

even full years. The results demonstrate the need for detailed inflow time-series, as it can otherwise 

lead to a distortion of investments and potentially to an unreliable system.  

Potential future research directions are:  

• Further examining the effects when using different levels of detail of input data. 

• Investigating the impact of coherent time-series of multiple renewable energy sources 

(e.g., hydropower, PV and wind) belonging to the same weather year compared to non-

coherent time-series, where each energy source is coherent only within its own domain. 

• Providing a software tool that allows to generate time- and space-coherent time-series for 

all renewables based on weather realizations.   
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