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Einleitung

Mit dem steigenden Anteil erneuerbarer Energien und der zunehmenden Verbreitung von
Elektrofahrzeugen ist das Stromnetz wachsenden Lastschwankungen ausgesetzt, wodurch
verbraucherseitige Lastoptimierung in Smart-Grid-Anwendungen an Bedeutung gewinnt. [1] Fir eine
prazise Steuerung sind geratespezifische Lastprofile erforderlich.

Da diese Messauflosung in Haushalten meist nicht verfligbar ist, kommt Non-Intrusive Load Monitoring
(NILM) als Behind-the-Meter-Methode zur Leistungsauftrennung zum Einsatz. [2] Ziel ist es, mit
geringem Hardwareaufwand geratespezifische Informationen wie Betriebszustdnde und
Leistungsaufnahme zu gewinnen. Bisherige NILM-Ansatze fokussieren entweder einzelne Gerate oder
diskrete Ereignisse. [3,4]

Das vorgestellte Konzept ist ein deterministischer Ansatz, der im Gegensatz zu herkdmmlichen
Mustererkennungsansatzen auf maschinelles Lernen verzichtet und damit keine grof3en Datensets mit
annotierten Ereignissen bendtigt. [5] Stattdessen ermdglicht das Framework die Identifikation und
Isolierung von Gerateprofilen mit nur einem Referenzprofil, gegeben durch einen Experten, in einem
iterativen Prozess.

Methodik

Umfangreich entwickelte Konzepte der Bildverarbeitung und -erkennung bieten hierfiir einen guten
Ansatz fir ein deterministisches Erkennen von Profilen in aggregierten Lastdaten. Die entwickelte
Methode ist in Abb. 1 dargestellt und Ubertragt Konzepte der Merkmalserkennung aus der
Bildverarbeitung, insbesondere Points of Interest (Pols) und SIFT-Descriptor-Matching, auf
Zeitreihendaten. Dieser Ansatz findet aussagekraftige und eindeutige Punkte zwischen mehreren
Bildern wieder, um so Objekte und Szenen zu erkennen. [6] Im Kontext von Zeitreihen wird der Begriff
der Timestamps of Interest (Tols) eingefuihrt, welcher analog zur Kantendetektion in Bildern erstellt
werden. Diese Tols werden auf Grundlage signifikanter Veranderungen in der gefilterten Zeitreihe
erzeugt.

Fur jeden Tol wird ein Deskriptor generiert, der die lokale Form und charakteristische Muster beschreibt,
und mit Referenzdeskriptoren verglichen, die aus vordefinierten oder annotierten Geréateprofilen
abgeleitet sind. Der Vergleich erfolgt mittels einer gewichteten Differenzmetrik in Kombination mit einer
skalierten euklidischen Distanz. Mithilfe einer inversen Distanzfunktion wird eine Ahnichkeit-Score-
Matrix mit Werten im Bereich von 0 bis 1 berechnet, welche die Ahnlichkeit zwischen allen detektierten
Tols und den Referenzdeskriptoren darstellt. Fir jeden Tol wird das wahrscheinlichste Ereignis durch
Auswahl des maximalen Scores bestimmt, erganzt durch einen zusatzlich konfigurierbaren
Mindestschwellwert, unterhalb dessen dem Tol kein Referenzgerat zugeordnet wird.

Diese Information wird anschlieBend zur Erstellung einer diskreten Eventmap verwendet, welche die
detektierten Gerate innerhalb der Zeitreihe abbildet. Auf Basis dieser automatisch annotierten Zeitreihe
werden die identifizierten Gerateprofile zu Leistungsprofilen rekonstruiert, indem die Referenzprofile
entsprechend der Dauer und Amplitude der jeweiligen Tols skaliert werden. Dies ermdglicht sowohl eine
selektive Leistungsauftrennung im Sinne von NILM, als auch die Abschatzung der Residual-
Leistungszeitreihe, die nicht erkannten Geraten entspricht. Diese Darstellung ist fir Menschen leichter
interpretier- und annotierbar, da sie die Uberlagerten Beitrage bereits identifizierter Gerate ausblendet.
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Abbildung 1: Konzeptionelle Darstellung des deterministischen NILM-Framework zur Event-Erkennung
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