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Motivation 

Energy storage systems (ESS), such as battery storage and hydropower reservoirs, are widely 

acknowledged as critical assets for mitigating the uncertainty inherent to variable renewable energy 

(VRE) sources [1]. However, optimization models for joint scheduling of VRE and ESS resources over 

long horizons are inherently complex, due to intricate interactions among heterogeneous units and the 

temporal coupling constraints of ESS. This complexity motivates using aggregated models constructed 

via time series aggregation (TSA) to reduce computational burden. Still, the temporal coupling 

introduced by ESS remains a challenge for constructing aggregated models [2], as standard a priori 

TSA methods, such as k-means [4], k-medoids [5], or hierarchical [6] clustering, focus on capturing the 

statistical features of the input data, rather than aiming to accurately approximate the output solution of 

the resulting aggregated model. 

To address the limitations of a priori TSA methods, the concept of a posteriori TSA methods has recently 

emerged, specifically aimed at minimizing errors in the aggregated model output. Nevertheless, existing 

a posteriori methods often rely on heuristics and typically lack formal performance guarantees. To 

overcome this, Wogrin [7] proposed an a posteriori TSA method that leverages the identification of active 

constraint sets in the optimization model to perform TSA while exactly preserving its optimal solution. 

Yet, this approach does not support optimization models with ESS time-coupling constraints and relies 

on ex-ante knowledge of the full-scale, non-aggregated model solution for TSA. 

Methodology and Novel Contributions 

The main contributions of this study are as follows: (1) We extend the theoretical results from [4] to 

models that support time coupling due to ESS, deriving a 4-step conceptual argument for the exact 

disaggregation into independent, parallelizable submodels and subsequent aggregation of periods 

within each submodel (see Figure 1) that achieves an exact aggregation of its full-scale counterpart. 

(2) Given that these theoretical conditions stem from ex-ante knowledge of the full-scale model solution, 

we propose a machine learning classifier to predict active constraint sets and inform TSA without relying 

on ex-ante knowledge of the optimal solution. (3) Since the active constraint sets are determined by the 

internal dynamics and technical characteristics of the VRE and ESS resources, we validate the classifier 

across different configurations, such as VRE paired with battery storage or hydropower reservoirs, and 

analyze their impact on aggregation and parallelization potential. 

Numerical Examples and Validation 

Using an illustrative optimization model for the joint scheduling of VRE and ESS resources over one 

year, we demonstrate that, under perfect information, the proposed approach achieves a 369-fold 

reduction in computational burden (lower bound) relative to the corresponding full-scale model, while 

incurring zero error in the objective function value and aggregated decision variables. We further validate 

the proposed classifier across a range of VRE and ESS configurations by benchmarking solution quality 

and computation time against full-scale models, showing its practical applicability under realistic settings 

where perfect information is not available. 
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Figure 1: Disaggregation into submodels (top) and aggregation within submodels (bottom) via active constraint 
sets. 
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