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Motivation ‘#7
What Will Electricity Markets Look Like in the Future? DLR

Well established field of energy systems modelling (ESM) ciliiland, 1975

Modelling challenges due to growing complexity pfenninger et al., 2014, Pye et al., 2021

Agent-based modelling (ABM) — a promising approach
» incorporating the actors’ perspective Nitsch et al., 2021
» representation of heterogenous actors Kraan et al., 2018
= execution of real-world examples computationally cheap Hansen et al., 2019

Applying the ABM AMIRIS? to simulate electricity markets
» ntegration of renewable energies & flexibility options in electricity systems
» analysis of market effects caused by policy and remuneration schemes

Nitsch et al., Institute of Networked Energy Systems, 16.02.2024 1 https://dir-ve.qitlab.io/esy/amiris/home/
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AMIRIS
Open Agent-based Electricity Market Model DLR

Input Agent-based simulation in hourly resolution
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Published open source under Apache 2 license
See also https://diIr-ve.qgitlab.io/esy/amiris/home/
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Case study A#y
Varying Storage Specifications DLR

» Base scenario:
German Day-Ahead Market 2019

00 :
= Open parameterization, f'
see AMIRIS Examples o - - =
= Variation of Storage % :
= Power N
= Capacity (resp. E2P ratio) -50
= Storage strategy
* Minimize system costs T 2000 1000 5000 5000
= Maximize profits Hours
—— Simulated prices  —=-- Historical prices

What's the performance of
different storage systems?

Comparison of simulated and historical prices

Nitsch et al., Institute of Networked Energy Systems, 16.02.2024 Nienhaus et al. (2022). 10.5281/zenodo.7789050
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Case Study Results: Dispatch Systems Costs in Bill. EUR
Minimize System Costs vs. Maximize Profits DLR

Minimize System Costs strategy achieves
reduction of dispatch system cost
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System costs from dispatching power plants in 300 scenarios with different Power and E2P combinations under minimize system costs strategy (left) and maximize profits strategy (right)
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Case Study Results: Total Storage Profits in Million EUR
Minimize System Costs vs. Maximize Profits

DLR
Maximize Profits Strategy significantly
100 outperforms other strategy in terms of profits
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Total profits in 300 scenarios with different Power and E2P combinations under minimize system costs strategy (left) and maximize profits strategy (right)

What’s missing? — Consideration of market competition amongst storage operators

Nitsch et al., Institute of Networked Energy Systems, 16.02.2024



Price Forecasting in AMIRIS
Limitations of Current Approach DLR

Inferior results based on
limited forecast quality

| Energy Exchange
Bids & Asks . .
based on naive forecast Bids & Asks Bids & Asks
I
/
-
) Single Supplyand Demand
‘Multiple Flexibility Option Agents
Flexibility Options
Preliminary
Bids & Asks
Naive
Price Forecast Agent
Forecast

Nitsch et al., Institute of Networked Energy Systems, 16.02.2024




FEAT PFOJ ect EBERHARD KARLS

: : : UNIVERSITAT
Flexible, Explainable, and Accurate Price Forecasts TUBINGEN

>  Szenario-Erzeugung &=
Szenario- Zeitreihen-
Speicher Datenbank
ML-Entwicklung ,
Szenario- < Parametergrenzen
Selektor
I— 0<A<2
50 < B <500
Y
Feature P Szenariodaten
Modulate Neuronale Netze Transformation l
5 2| Features
< herige St ' (
Q 8 @) Loss ML-Agent <€ Jomerge ~TomprEse Strommarkt
OO« L
) > -
O @) O Netze & Gewichte -
ebote
a0 R0 Strompreisvorhersage ¢
Unsicherheitsmalle
Agent A Agent B (-2 Agent N
Combining machine learning expertise
with energy system analysis Fadoral Minsty
gy y y % of Education
Nitsch et al., Institute of Networked Energy Systems, 16.02.2024

and Research



Concept of Improved Forecasting Agent
Providing Enhanced Price Forecasts

Al m Market Clearing data Data provider ]

= Central forecast agent

* Price time series forecast of >=24h

= Input for schedule optimization of agents

» Enabling forecasts on future energy systems

Historical data

Forecasting
Agent

AgentA | [AgentB

Energy Exchange

Price forecast

Available Data
» Previous electricity prices
* Previous residual load
» Future forecasted (residual) load
= Future forecasted RE generation

Bids & Asks

Forecasting agent should consider
impacts of bidding agents

Concept of new Forecasting Agent in AMIRIS

Nitsch et al., Institute of Networked Energy Systems, 16.02.2024

i DLR



Forecasting Performance — Case: Flexibility Share Variation
Overview and Price Impacts DLR

Mean Absolute Error (MAPE) for four test scenarios with rising flexibility capacities

Scenario I I 1l \Y, %

Metric No  Litle  Mid  High )
Flex Flex Flex Flex £

Naive t; 9.29 7.78 6.76 6.45 % %
Naive t,, 857 754 627 501 .
Exponential Smoothing 8.06 6.70 5.73 5.46 ;m
N-BEATS 715 624 538 512 ) Lo
TFT 411 390 320 326 i — s
TFT w/ future covariates | 3.12 3.45 3.26 2.86 o110 20191120 20101101 20101122 20191125 20101106 20151125 2019_11_26

Price dampening impact of different flexibility capacities in the four
scenarios on electricity prices over a one-week period in November 2019.

Machine learning methods perform best

Nitsch et al., Institute of Networked Energy Systems, 16.02.2024
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Forecasting Performance — Case: Renewable Expansion
Price Forecasting Applying Temporal Fusion Transformer DLR
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Forecasting performance in scenarios of varying renewable eneljy expansion

Superior performance of model with future covariates

Nitsch et al., Institute of Networked Energy Systems, 16.02.2024

Be aware of different scaling

Note: Scenarios are considered as parameter variations and shall not
be interpreted as definitive and complete future electricity systems



Discussion A#y
Limitations and Strengths DLR

» Missing analysis of impact by different weather years
= |nitial training computationally intensive

* Training and testing beyond historical data

» Powerful approach capable to model future price dynamics
» Results on error metrics allow integrating in electricity market simulations

Nitsch et al., Institute of Networked Energy Systems, 16.02.2024




Conclusion #
DLR

= Motivation: Modelling market competition among flexibility options

= Aim: Precise time series forecasts in energy system models

* Method: Comparison of methods (naive, regression, machine learning)

» Results: ML outperforms benchmarks even in future electricity market scenarios

Outlook

* Fine-tuning and further testing of models
* Integration of NN in AMIRIS enabling endogenous & comprehensive forecasts
* |nvestigation on competition among flexibility options

» Further analysis in FEAT project, see https://www.mlsustainableenergy.com/

Contact: Felix Nitsch felix.nitsch@dir.de German Aerospace Center | Institute of Networked Energy Systems | Energy Systems Analysis
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